
Doc ID: 6689691

(U)

Instructor Notes
Updated about 2 years ago by._l ______ f i~ COMP 3321

3 144 6

0

IMitH,1 111

(U//FOUO) Instructor notes for COMP 3321.

Recommendations
I

UNCLASSIFIED//FOR OFFICIAL USE ONLY

.
... . . .

•• ~1-(_b_) _(_3_)-_P_._L_._ s_6_- _3_6~

(U) So, you're teaching the Python class. What have you gotten yourself into? You should probably take a few moments (or possibly a few days) to
reconsider the life choices that have put you in this position.

(U) Course Structure
(U) As mentioned in the introduction, this course is designed for flexibility. When taught in a classroom setting, a single lesson or module can be
covered in a session that lasts between 45 and 90 minutes, depending on the topics to be covered. The standard way to structure the course is as
a full-time, two week block. During the first week, the ten lessons are covered with morning and afternoon lectures. During the second week, up to
ten modules are covered in a similar manner, as needed or requested by the students in the class. (If the class needs are not known, take a vote).
During the first few days of class, students should choose a project to work on. On the last day, students should report back on their progress and, if
possible, demonstrate their work. Instructors should be available outside of lectures to assist students with exercises and projects.

(U) The two week block is not the only way of teaching the course. The material could be presented at a more leisurely pace, for instance during a
weekly brown bag lunch that continues for several months. Alternatively, if students are already prepared (or willing to do some of the initial lessons
in a self-study manner), a great deal can be accomplished in a two or three day workshop. For instance, if all students already have a basic
knowledge of Python, they might well start with the lessons on .tQQling and .w.r:illng modules and Ra.cisag~. then move on to cover various modules
of interest.

Approved for Release by NSA on 12-02-2019, FOIA Case# 108165

Doc ID: 6689691

(U) Instructional Style
(U) When teaching mathematics, the common practice of the instructor writing solutions on the chalkboard is a moderating method that helps
students keep up. Writing on a chalkboard is not usually helpful when teaching programming, but the same principle applies; as the instructor, you
should adopt practices that help you slow down. We recommend that you have a live, interactive session displayed at the front of the room, large
enough for all the students to see. This session can either be a terminal session or a Jupyter notebook. The important detail is that in most cases
the commands should not be pre-populated ; e.g. you should not just execute cells from an existing Jupyter notebook. The materials are present to
help you prepare, and as a reference for the students as they work on exercises; they are not an acceptable substitute for the shared experience of
teaching and learning. You will make unexpected mistakes as you write code live in front of the class. Don't worry, relax, and let the students help
you- it will help them learn the principles and figure out how to solve their own problems. This is not a substitute for proper preparation; too
many mistakes and fumbles will cause your students to lose interest in the course and trust in you .

(U) Ongoing Development
.

... . . .
(b) (3)-P.L . 86-36

. .
(UHFOUO) The developers of this course believe that the current materials are sufficiently w~ll.del'E!loped to be an effective aid for the course.
However, improvements, extensions, and refinements are alwa s welcome. To tl,pi ent:1; w~ have attempted to make it easy to contribute to the
project. The documentation is based on the NSAG fork of _________ .. original COMP 3321 materials. If you want to make changes for your
own purposes, feel free to clone that repository or fork any o ese note oo s on the Juptyer Gallery. Please submit a change request on the
Gallery if you'd like to make a one-off contribution , including new or improved exercises, additions to lessons or modules, or entirely new lessons or
modules. If you would like to be a collaborator on all of the COMP 3321 notebooks, contact the COMP3321 GlobalMe group and ask to be added.

(U) A possible icebreaker
(U) To get the students interacting with each other as well as thinking about code at an abstract level , consider the following icebreaker. Instructor
becomes human compiler to interpret written instructions to get out of the room .

(U) Phase I -- discussion with whole class

(U) Invent a programming language together, one sufficient for this task. Clearly explain the task, showing where in the room the instructor will begin
and how big a step is.

(U) Take suggestions from students about what instructions they will want to use. Write each instruction on the board. Be clear that everything
written on the paper must come from syntax on the board. No other syntax allowed.

(U) Make sure the instructor and students agree about precisely what each instruction means. As the instructor, be certain the list on the board is
enough for you to solve the problem. Give hints until it's complete.

(U) Let the students come up with the syntax. But here are some syntax examples they may come up with.

• step(n) -- takes in an integer and causes instructor to take n steps.

Doc ID: 6689691
• turn(d) -- takes in a number in degrees and caused instructor to turn clockwise that many degrees. Students may abuse this and put in

numbers that lead to dizzyness, e.g. turn(1440)

• obstacle -- returns boolean indicating rather an obstacle is directly in front of instructor. Variations for checking to the left or right may be
desirable as well.

• if<> then<> else<> -- first blank takes boolean (make sure boolean functions exist!). Second blanks take instructions.

• while < >: < > -- takes boolean function and any expression

• not -- expression to reverse a boolean

• any integer

(U) Phase II -- break into teams

(U) Teams of 3-5 students tend to be appropriate.

(U) Each team produces a piece of paper with computer instructions for the human compiler to get out of the room. Only allowable syntax is what is
written on the board. Should take no more than 15 minutes.

(U) Phase Ill -- demonstrations

(U) One at a time, the instructor takes a team's solution and follows the instructions, literally and fairly. Does the instructor get out of the room?

(U) Introductory e-mail
(U) There are a couple things it would be nice if the students could have done in advance, in particular having GITLAB accounts and INHERE
agreements. I have the COMP3321 learning facilitators send the following e-mail to enrolled students:

(U) Aloha--

(U) You are receiving this e-mail because you are registered for COMP3321 beginning< .. >.

(U) If at all possible, we could use you do a few setup things in advance to make class go smoothly on the first day. Really, two simple things that
will take a minute of your time and save us hours on the first day of class.

(U) 1) GO iagree and find , read and agree to the INHERE user agreement.
....

• • • • • • • • • ♦
• • • • ♦

(U) In more detail : ••••• • • • • • • • •
(U) 1) The co!-l~s~ wUI be n..111-vra·~~BENCH ~~d NBGALLERY. Before using this, you will need to agree.to.the terms of service and l I
I ~cknowledge this. Instructions can be found here: hll~ggfJfily.nsa,jc,g~ (GO NBGALLERY) by clicking GET A BENCH. We only
need you to follow the first step, outlined below. Be careful going further because LABBENCH mach+nes self-destruct two weeks after creation, so

♦

(U) 2) GO gitlab.

I p . L . s 6- 3 6 l

you'll want a fresh one the first day of class. • •

(U) GO iagree. Search "inhere". Read the INHERE user agreement and agree to it.._l ___ .. 1:.Vi11 eventually acknowledge this agreement. That's
what we need. . .

Doc ID: 6689691 I P . L . 86- 36
(U) 2) GO gitlab. By going there once, an account will be created. That's all we need before we start. : : : : : ;· t,,. r
(U) If you want to go further and use git from the command line .. l __ _,lfollow instructions ~~r~:. · i. 0 i •. • ·v • · · ~ • i • w
(U) There are several options presented. Whatever you <taJi ~et-t~ work is"fine.. • • • • • • •• • • • . . ---- . .
(U) 3) 0ptiral. Thr ,::la•s- wi It Ile" riJri Off LABBE~~~. But some people prefer to use I J,,~chin~\his will take $Om~ setup work. Install
Anaconda by following these instructions: httR.S.Jiproduction,tradecraft.~j. r- .nnu,anrey/29475 •. . . .
(U) If you have any issues with the instructions, please contact the instr_u~tor: ~-~;

(U) Submitting proje_9ts · · · · ·
(U) A possible avenue for submittin~ "oi ~~j~cts is GITLAB.1 !;he instructor adds all students in the class to the
Gitlab group comp332tOA new project is created within that group enl,tled class-proJecls-: mm-YYYY. Students will submit their code to
Gitlab. This can be easily accomplished through the web application by finding the'+' sign and copying and pasting code. The web application does
not allow for the creation of folders. Students who need folders can make them from the command line or get help doing so.

UNCLASSIFIED//FOR OFFICIAL USE ONLY

Doc ID: 6689692

.
Updated 3 months aao bnl'vc.....,.. _____ 1 i~ COMP 3321

:.Python3 thumbnail '52 ~ ilr 369

Python Programming
0

....

14%M,i li-1111-FFfJI

(UHFOUO) Course introduction and syllabus for COMP 3321, Python Programming.

Recommendations

UNCLASSIFIED//FOR OFFICIAL USE ONLY

(U) History

.....
I (b) (3)- P . L . 86 - 36 1

... in December, 1989, I was looking for a "hobby" programming project that would keep me occupied during the
week around Christmas. My office ... would be closed, but I had a home computer, and not much else on my
hands. I decided to write an interpreter for the new scripting language I had been thinking about lately: a
descendent of ABC that would appeal to Unix/C hackers. I chose Python as a working title for the project, being
in a slightly irreverent mood (and a big fan of Monty Python's Flying Circus)

Guido van Rossum, Foreword for Programming Python, 1st Edition.

(U) Motivation

(U) Python was designed to be easy and intuitive without sacrificing power, open source, and suitable for everyday tasks, with quick development
times. It makes the layers between programming and problem solvingseem as thin as possible. It's suitable for:

• Opening an interactive session to solve the Q.ally~,
• Writing a script that automates a tedious and time!'ddn'sfirnifi61task,Footer Text · · ·

AoorovP.rl for RP.JP.ASP. hv NSA on l?-02-201q. FOTA C.nSP. # lOAln~

Doc ID: 6689692
• Creating a quick web service or an extensive web application , and

• Doing advanced mathematical research .

(U) If you don't know any programming languages yet, Python is a good place to start. If you already know a different language, it's easy to pick
Python up on the side. Python isn't entirely free offrustration and confusion, but hopefully you can avoid those parts until long after you get some
good use out of Python.

(U) Programming is not a spectator sport! The more you practice programming, the more you will learn in this class, both in breadth and depth.
Python practically teaches itself--the goal of your instructors is to guide you to the good parts and help you move just a little bit more quickly than
you would otherwise. Happy Programming!

kcd-python

(U) Objective
(U) The goal of this class is to help students accomplish work tasks more easily and robustly by programming in Python. To pass the course, each
student must write at least one Python program that has substantial personal utility or is of significant personal interest. When choosing a project,
students are encouraged to first think of work-related tasks. For students who need help getting started, several suggestions for possible projects
are found at the bottom of this page. On the first day, instructors will lead a discussion where project ideas are discussed.

(U) This class is designed for students of varying backgrounds and levels of experience, from complete novice to competent programmer. Asking
each student to design and implement their own project allows everyone to learn and progress at an individual pace.

(U) Logistics
(UffFOUO) This course is designed to be suitable for self-learning. Even if no formal offerings are available for your schedule, you may access and
work on the modules of this course at any time. Even if you don't have access to a recent version of Python on a workstation or virtual machine, you
can access a personalized Jupyter notebook available on LABBENCH . For an individual pursuing this self-study option, it is recommended to first
cover the Python Basics roughly in order, then select as many of the Useful Modules as seem appropriate. You can also use this Jupyter
notebook to experiment and write solutions to exercises.

(UHFOUO) One possibility for a group of potential students who start out with a different amounts of programming experience is to use Jupyter as a
self-study tool until everyone has a basic understanding of programming, then follow up with an abbreviated instructor-led course (anywhere from
two days to a week or more, depending on needs).

(U) In the Classroom

(U) For a two week course: there will be a morning lecture and an afternoon lecture every day. The morning lecture will last between an hour and
ninety minutes; the afternoon lecture will be somewhat shorter. If a lecture is going too fast, please ask questions to slow us down! If it's going

too slow, feel free to work ahead on your own. Please En ter Footer Text ...

Doc ID: 6689692 ----. .--------------------.
(UHFOUO) You will either use Python within I tnvironment or within LABBENCH.I._ ~-..... --"!"""'!"-~--'!""!""'---~~--~

I r'hile we will point out.some differences between the Python 3.x and 2.x lines,)his course will focus on Python
3. If you need or want to run Python ofl .t...inux, probably withtn.a MachineShOR VM, we'll work with you. To the extent possible , we will write code in
platform-agnostic manner and point out featOre~ that are unique-to specific versions of Python. •
(U) Although lectures will only take up two or three h·oul'S.each day, we eocourage you to spend the remainder of your day programming in Python,
either on your own or in groups, but in the classroom if possibie.. At least one jnstructor will be available in the classroom during normal business . . .
hours. •

(U) This course is a work in progress; we welcome all suggestions. There ~re·l'JIQre UsefµI Modules than we can h$:>pe to cover in a two-week
class; instructors will take a vote to determine which modules to cover. If there is a·nbYl~r toi,ic that you would like to have covered , especially along
the lines of "How would I do x , v , or z in Python?", please ask-if there's enough intere~tr 'Ue'tl ~over it in a lectu;e. We'd even be happy to have
you contribute to the course documentation! Talk to an instructor to find out how. • • • •• • • •

(U) Table of Contents

(U) Part 1: Python Basics (Week 1)

• (U) Lesson 01 : Introduction: Your First Python Program
• (U) Lesson 02: Variables and Functions

o (U) Optional: Variable Exercises

o (U) Optional: Function Exercises

• (U) Lesson 03: Flow Control

o (U) Optional: Flow Control Exercises

• (U) Lesson 04: Container Data Types

• (U) Lesson 05: File Input and outpJJ.t
• (U) I I Lesson 06: DeveloRment Environment and Tooling

• (U) Lesson 07: Object Orienteering: Using Classes
0 (U) Lesson oz: Supplement

• (.U) Lesson 08: Modules. NamesRaces, and Packages

o (U) Supplement: Modules and Packag~
• (U) Lesson 09: Exceptions, Profiling, and Testing

• (U) Lesson 1 O: Iterators. Generators and Duck JyQ.ing
o (U) Supplement: Pipelining with Generators

• (U) Lesson 11 : String Formatting

Please Enter Footer Text ...

I P . L . 86 - 36

Doc ID: 6689692

(U) Part II: Useful Modules (Week 2)

• (U) I I Module: Collections and ltertools
o (U) Supplement: Functional Programming

o (U) Supplement: Recursion Examples

• (U) I I Module: Command Line Arguments

• (U) Module: Dates and Times
o (U) Datetime Exercises

• (U) Module: Interactive User Input with ipy}'Vjdg~

• (U) Module: GUI Basics with Tkinter
0 (U) Supplement: Python GUI Programming Cookbook

• (U) I I Module: Loggiog

• (U) I I Module: Math and More
0 (U) Supplement: COMP3321 : Math. Visualization, and More!

• (U) Module: Visualization

• (U) Module: Pandas
• (U) I I Module: A Bit About Geos

• (U) I I Module: My First Web Application

• (U) I I Module: Network Communication Over HTTPS and Sockets
o (U) Supplement: HTTPS and PKI Concepts

o (UffFOUO) Supplement: fy1tl.Qo, HTTPS. and LABBENCH
• (U) Module: HTML Processing with BeautifulSouQ

• (U) I I Module: Operations with Compression and Archives
• (U) I I Module: Regular Expressions

• (U) I I Module: Hashes

• (U) j I Module: SQL and Pyjhon

o (U) Supplement: Easy Databases with sglite3

• (U) Module: Structured Data: CSV,1™1, and JSON
• (U) Module: System Interaction

o (U) Supplement: Ma..o.iQWfiling Microsoft Office Documents with wjn32com
• (U) Module: Threading and Subprocesses

• (UOFOUO~ Distributing a Python Package at NSA

• (U) Module: Machine Learning Introduction

(U) Homework

• (U) DaY. 1 Homework Please Enter Footer Text . ..

Doc ID: 6689692
• (U) DaY. 2 Homework

(U) Exercises (with Solutions)
• (U) Dictiona[Y. and File Exercises

• (U) Structured Data and Dates
• (U) Datetime Excercises

• (U) Qbject-Oriented Programming and Exce~

(U) Class Projects
(U) Click here to get to a notebook containing instructions for password checker and password generator projects.

(U) Project Ideas
• (U) Write a currency conversion script

• (U) Write a web application

• (U) Do Project Euler Qroblems

• (U) Find Anomalous ActivitY. on the BigCorQ Network

• (U) RSA Encryption Module, Efil12
• (U) Pick a project from one of the Safari books below

(U) General Resources

(U) Python Language Documentation
• (U) fython 2.7,10
• (U) fyjhon 2.7 on DevDocs

• (U) fython 3.4.3
• (U) .EY.thon 3.5 on DevDocs

(U//FOUO) NSA Course Materials
Please Enter Footer Text . ..

Doc ID: 6689692
• (U) Instructor Notes .---------
• (UffFOUO) COMP3321 Learn Python server I (b l (3 J-P. L . 86 - 36

• (UffFOUO' CRYP 3320 (C v .) ••••••••••••••• • • • • • • • • • • • • • • • •••• 1 • • • • • • • ••

• (UHFOUO➔

• (U/ffOUO) CADP Pyjhon Class

(U) Books
• (U) Automate the Boring Stuff with Py.ttmn

• (U) Black Hat Pyjhon : PY.than Programming for Hackers and Pentesters

• (U) Dive into PY.than

• (U) ~~ython Programming

• (U) Head First Pyjhon

• (U) High Performance PY.than (advanced}

• (U) Leaming.J:y.thQn

• (U) Leaming.Eyjhon Programming (videos)

• (U) Programming.Eyjhon

• (U) .Python Crash Course (includes 3 sample projects)

• (U) .f:yjhon PlaY.ground (more sample projects)

• (U) !:Y.thon Pocket Reference (consider getting a print copy)

• (U) .Python Programming for the Absolute Begin.ofil (even more sample projects, games & quizzes)

o (U) and More Pyjhon Programming for the Absolute Beginner

• (U) Think Py.tb.Qn

• (U) Safari Books (General Query)

(U) Other
• (U) Final Project Schedule Generator

o (U) Just a little notebook for randomly generating a schedule for students to present their final projects for COMP3321 .

• (UHFOUO) The .f:yjhon groui:2 on NSA Gitlab

• (U) The Hitchhiker's Guide to PY.than!

• (UHFOUO) python on Wikilnfo
• (U) !:Y.thon on StackOverflow

(U) Additional targeted resources (often excerpts from th~)Iare~ink@dcitlEea~esson and module.

Doc ID: 6689692

UNCLASSIFIED//FOR OFFICIAL USE ONLY

Please Enter Footer Text . ..

Doc ID: 6689693

Lesson 01: Introduction: Your First Python
Program

0
.... ----

Updated 8 months ago byl I in COMP 3321
3 24 2693 747

ml PMlrM,i

.
.....

.

(U) Covers Anaconda installation, the python interpreter, basic data types, running code, and some built-ins.

Recommendations

UNCLASSIFIED//FOR OFFICIAL USE ONLY

(U) Welcome To Class!
(U) Let's get to know each other. Stand up and wait for instruction.

(U) Who has a specific project in mind?

(U) Method 1: Anaconda Setup
(U) Alternately, follow this tradecraft hub article. httRs://Rroduction .tradecraft.Rroj .nsa.ic.gov/entry/29475

I (b) (3) -P . L . 86- 36 1

(U) We will be using version 4.4.0 of the Anaconda3 Python distribution, available from Get Software. Anaconda includes many packages for large­
scale data processing , pred ictive analytics, and scientific computing.

(U) Installation Instructions

Approved for Release by NSA on 12-02-2019 , FOIA Case# 108165

Doc ID: 6689693
1. (U) Click on the link above
2. (U) Click on the "Download Now" button
3. (U) Accept the agreement and click "Next"
4. (U) Click "Next"
5. (U) Download "Anaconda3-4.4.0-Windows-x86_64.exe
6. (U) Open the folder containing the download (typically this is your "Downloads" folder)
7. (U) Doubleclick the Anaconda3-4.4.0-Windows-x86_64.exe file
8. (U) Click "Next" to Start the installer
9. (U) Click the "I Agree" button to accept the license agreement

10. (U) Choose to install for "Just Me" and click "Next"
11. (U>'fFOUO) Select a destination folder on your U: drive (such as U:\private\anaconda3)

1. (UHFOUO) Click the "Browse .. . " button, Click on "Computer" and select the U: drive
2. (U/fFOUO)- Select "My Documents" and press "OK" [Note: DO NOT Make a folder named anaconda3]
3. (UffFOUO) In the Destination Folder input area add "anaconda3" as the folder name
4. (UftFOUO) Click "Next"

12. (U) Click "Install" to begin the install (leave checkboxes as is)
13. (U) Wait about 30 minutes for the install to complete I p. L. 86- 36

(U) Running python ----·.
------ ♦ ,,,.,.,..,,,,.,.---,,,,,,,,

,I' ,I' •• ,I' ,I' ,I' .,. .,.

(U) You can run python directly on yourIDesktop and immediately interact with it: •

1. (U) Open a Windows command window (Type "cmd" in the Windows Programs searcrt bar)
2. (U) Type "python" in the command window •

(U) Running Jupyter
(U) Alternately, you can run python in a browser from a web-enabled python: called a jupyter notebook.l I

he Notebook Gallery is at gQ..D.bgfilfu.&. For this class, however, we'll each
start up our own individual Jupyter web-portal to run our class notebooks.

1. (U) From the Windows Start menu, search for "jupyter"
2. (U) Right-click on Jupyter Notebook in the results and select Properties
3. (UlfFOUO) In the "Target" field , add " u:\private" at the end (after "notebook") [Note: don't forget the space before u:\private]
4. (U) Click Apply and then OK
5. (U) Search for jupyter again in the start menu and click on Jupyter Notebook to run it
6. (U) Wait a few moments ... This should launch Jupyter in your browser at http://tocalhost:8888/tree

(U) Method 2: LABBENCH Setup

Doc ID: 6689693

(UHFOUO) Step 1: Access to LABBENCH
• (Uf/FOUO) gQJ.ag~ and read and accept the INHERE User Agreement.

(UffFOUO) This is a prerequisite for access to LABBENCH, a VM system where we will be working. It may take a few hours for the approval to
propagate through the system.

(U) Step 2: Visit Jupyter Gallery
1. (UHFOUO) gQ.jJJRYE!:
2. (U) Click on the Jupyter Gallery logo to get to the Gallery.
3. (U) Click on Tour the Gallery for quick demo.
4. (UHFOUO) To find the course notebooks, either search for "Syllabus" or choose Notebooks > Leaming > COMP 3321 and sort by title to find

the Syllabus.

(UHFOUO) Step 3: Set up Jupyter on LABBENCH
(U/fFOUO) At the Jupyter Gallery, click "Jupyter on LABBENCH" for a tutorial on how to get set up.

(U) Basic Basics: Data and Operations
(U) The most basic data types in Python are:

• Numbers

o Integer <type ·int•> (these are "arbitrary precision"; no need to worry whether it's 32 bits or 64 bits, etc.)

o Float <type 'float' >

o Complex <type 'complex'> (using lj for the imaginary number)

• Strings <type 'str' >

o No difference between single and double quotes

o Escape special characters (e.g. quotation marks)

o Raw string r' raw string· prevents need for some escapes

o Triple-quotes allow multiple line strings

o Unicode u' Bert \x26 Ernie' <type 'unicode' >

• Booleans: True and False

(U) We operate on data using

• operators, e.g . mathematical operators + , - ; the keyword in , and others

Doc ID: 6689693
• functions , which are operations that take one or more pieces of data as arguments, e.g. type(' hello') , len('world') , and

• methods, which are attached to a piece of data and called from it using a . to separate the data from the method, e.g. 'Hello
World' .split() , or ' abc' .upper()

(U) Deep in the guts of Python , these are all essentially the same thing, but syntactically and pedagogically it makes sense to separate them.

(U) Pieces of basic data can be stored inside containers, including

• Lists

• Dictionaries

• Sets

but we'll introduce those later.

(U) The Interactive Interpreter
With that basic background, let's try some things in your Windows command window ...

U:\private>python
Python 3.5.1 !Anaconda 2 . 5.0 (64-bit)I (default, Jan 29 2016, 15:01:46} [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.

5 + 7

type (5+7)

4.5 - 5. 5

type (7 .1 - 2 .1)

13/5

13//5

lj * 4j

this changed in python3

"hello" + " world"

"hello " * 10

(U) Executing code in a file

Doc ID: 6689693
Open the file first-program.py (or anything ending with . py) in your favorite editor (I use emacs , but you can use whatever you want).

(U) If you don't have a favorite editor do this:

1. (U) Go to your Jupyter portal at httIr//localhost:8888/tree
2. (U) Pull down the "New" button menu and choose "Text File"
3. (U) Click on the "Untitled1 .bet" name and enter the new file name as "first-program.py"

(U) Type some Python statements in it:

5+7
9*43
8**12

(U) Don't forget to save it (File->Save from Jupyter).

(U) To run it, give the file name as an argument to Python :

Make sure the command window is referencing the same folder as the file. That is U:\private for most.
If your command window is not referencing U:\private, do this:
1. Enter "U:"
2. Enter "cd private"

U:\private>python first-program.py

(U) Nothing appears to happen, because auto-printing of the output of a function only happens in the interpreter. Fix it up:

print(5+7)
print(9*43)
print(8**12)

(U) Built-in functions and methods
(U) Some functions work on almost any arguments that you supply:

• help(x) : shows interactive help

• dir(x) : gives the directory of the object, i.e. all the methods available

• type(x) : tells you the type of x - a type is almost the same as any other object

• isinstance(a, b) : tells if object a is an instance of b , which must be a type ; something like type(a} == b

• print

• hasattr(a,b) : tells whether a has something by the name b ; something like b in dir(a)

• getattr

Doc ID: 6689693
• id

• input

(U) Constructor functions usually try to do their best with the argments you give, and return the appropriate data of the requested type:

• str : turns numbers (and other things) into their string representations

• int : truncates float , parses str ings containing a single integer, with optional radix (i.e. base), error on complex

• float : parses str ings, gives float representation of int , error on complex

• complex : takes (real, imag) numeric arguments, or parses a str for a single number

(U) Other functions only work with one or two types of data:

• Numbers:

o Functions: abs , round , float , max , min , pow (modular), chr , divmod , etc.

o Operators: Standard math , bitwise: « , » , & , I , "
o Methods: Numeric classes don't have methods

• Strings:

o Functions: len , min , max , ord
0 Operators: + , * (with a number), in

o Methods: strip , split , startswi th , upper , find , index , many more; use dir('any string') to find more

(U) Exercises:
1. Make a shopping list of five things you need at the grocery store. Put each item on it's own line in a cell. Remember to use quotes! Use print()

so that each of your items displays (try it first without).
2. Your groceries ring up as 9.42, 5.67, 3.25, 13.40, and 7.50 respectively. Use python as a handy calculator to add up these amounts.
3. But wait! You decide you to buy five of the last item. Re-calculate your total.
4. Using the len() function, determine the number of characters in the string "blood-oxygenation level dependent functional magnetic

resonance imaging" (Fun fact: this string is the longest entry in WordNet3.1 Index).
5. Pick your favorite snack. Use the * operator to print 100 copies of it. Modify your code to have them print with spaces between them.
6. Challenge: Run dir('any string') . Pick two methods that sound interesting and run help(' any string'. interesting_method) for both of

them. Can you figure out how to use these methods?
7. Bonus challenge: Can you figure out how to get the same output as Exercise 1 using only one print statement? If so, can you also do it in one

line of code?

UNCLASSIFIEDh1FOR OFFICIAL USE ONLY

Doc ID: 6689693

Lesson 02: Variables and Functions
0 (b) (3)- P . L . 86 - 36

.
Updated 5 months ago by_l ____ lin COMP 3321

3 3 1196 473

....

di,H,i fm

(U) Introduction to variables and functions in Python.

Recommendations

UNCLASSIFIED

(U) My Kingdom for a Variable
(U) All the numbers and strings in the world won't do you any good if you can't keep track of them. A variable in Python is a name that's attached to
something--a number, a string , or something more complicated, like a list, an object, or even a type .

(U) Python is dynamically typed, which means that a variable, once declared , can hold different types of data over its lifetime. A variable is declared
with the = operator. Go ahead, give that value a name!

X = 2

X

X + 5

(U) In interactive mode, a _ is a reference to the last cell output.

9*8

(U) This can be especialy helpful when you forget to save the output of a long computation by giving it a name.

Doc ID: 6689693

y = X + 5

(U) Notice the line y = x + s produced no output, so was ignored when _ was called.

isinstance (x, int)

isinstance (x, str)

(U) So, let's change what x is equal to (and even change its type!) by just reassigning the variable name.

x = "Hello"

isinstance (x, int)

isinstance (x, type (B))

isinstance (x, type (' a '))

y = X + 5

(U) So what about converting from one type to another?

a = "3 .1234"

type (a)

b = float (a)

type (b)

b

float (x) # This should fail . Why?

c = str (b)

C

i = int (b)

i

Doc ID: 6689693
(U) Go ahead and use the dir() function to see what variables you have defined. This commands shows all the objects that are defined in your
current scope (we will talk about scope later).

dir ()

del x

dir ()

x + 5 # Why does this crash?

(U) We can also assign variables with some fancy shortcuts:

a = b = c = 0

print (a)
print (b)
print (c)

x, y = 1, 2

print (x)
print (y)

z = 1, 2
z

What does this do??

x, y, z = 1 , 2 # How about this?

Note that since the last command failed , the values of x, y, and z were unchanged.

print (x)
print (y)

x, y = Y, X

print (x)
print (y)

Fast Swapping!

(U) Variable names can be assigned to all the different object types. Keep these tricks in mind as you learn about more complex types.

(U) Let's talk lists for a minute. We'll go into details about containers later in the course, but you'll need to know the basics for one of the exercises.

1 = [1 , 2, 3 , 4]

Doc ID: 6689693

1 in 1

5 in 1

1 = ["one" , "two " , "three" , "four "]

"one" in 1

(U) Exercises

1. Save a copy of your favorite snack in a variable. Using that variable, print your snack a 100 times.
2. Ask your neighbor what their favorite snack is. Save it in a variable . You should now have two variables containing snacks. Add (concatenate)

them together and print the result 100 times.
3. Using the [] notation above, make a list of five groceries and save in a variable. (If you did the earlier grocery list exercise, use those

items). Using the variable from Exercise 1, test to see if your favorite snack is " in " the list.
4. Using your grocery list from Exercise 3, and the variable from Exercise 2, test to see if your neighbor's favorite snack is on your list just as

you did for your snack.
5. Use the "fast swapping" to swap your favorite snack with your neighbor's. Print both variables to see the result. Are you happy or sad with

your new favorite snack?

(U) Functions
(U) So what else can we do with variables? Lots!

7 % 2 # Modulo operator

7 ** 2

min (2, 7) # built-in function

max (2, 7)

dir (" a ")

(U) Python comes with a bunch of built-in functions. We've used a few of these already: dir() , min() , max() , is instance() , and type() .
Python includes many more, such as:

abs (-1)

round (l. 2)

Doc ID: 6689693

len ("12345")

(U) But functions take memory, and there are hundreds of modules included with Python, so we can't have access to everything that Python can do
all at once. In order to use functions that aren't built in, we must tell Python to load them. We do this with the import statement:

import os

(U) This loads the os module. A module is a file containing definitions and statements, and are generally used to hold a collection of relatated
functions. Theos module contains functions relating to the Operating System of the computer where Python is running.

(U) So what's contained in os ? Let's look:

dir (os)

(U) That gives you a list of everything defined in the os module.

os . name # why doesn't name require parentheses?

OS . listdir()

(U) Python has robust documentation on the standard modules. Always consult the documentation if you are unsure how to use a function.

(U) What if I don't need everything in a module?

from os import listdir

listdir()

(U) We'll get into more modules later in the class. For now we'll just touch on two others:
sys , which contains variables and functions relating to Python's interaction with the system; and random , which provides random number

generation.

import sys

dir (sys)

sys .argv # holds command Line arguments

sys.exit() # exits Python (you may not want to type this)

import random

random . randint(l , 5)

Doc ID: 6689693

random . random()

(U) Exercises
1. Make a list of your grocery prices (9.42, 5.67, 3.25, 13.40, and 7.50 respectively) and store in a variable. Use built in functions to find the

price of the cheapest and most expensive item on your i:irocery list.
2. import random and run help(random.randint) . Use randint to randomly print between O and 100 copies of your favorite snack.
3. Run dir(random) . Find a function in random that you can use to return a random item from your grocery list. Remember you can

use help() to find out what different functions do!
4. Write code to randomly select a price from your list of grocery prices, round to the nearest integer, and print the result.
5. Challenge: Your grocery store is having a weird promotion called "win free change" ! A random item from your (price) list is chosen and you

pay 10 dollars. If the item is less than 10 dollars you get your item and the change back as normal; however, if you get lucky and the price is
more than 10 dollars you get the item and the difference in price back as change. Write code randomly pick a price from your price list and
print out the amount of change the cashier has to pay you during this promotion. Hint: use the built in abs function.

(U) Making your own functions
(U) Functions (in Python) are really just special variables (or data types) that can have input and output. Once defined, you can treat them like any
other variables.

(U) Functions are defined with a specific syntax:

• Start with the keyword def ,

• followed by the function name, and

• a list of arguments enclosed in () , then

• the line ends with a : , and

• the body of the function is indented on following lines.

(U) Python uses white space to determine blocks, unlike C, Java, and other languages that use {} for this purpose.

(U) To have output from the function , the return keyword is used, followed by the thing to be returned. For no output, use return by itself, or just
leave it out.

def first_func (x):
return x*2

first_func(10)

first_func('hello')

Doc ID: 6689693
(U) Wow ... Python REALLY does not care about types. Here is the simplest function that you can write in Python (no input, no output, and not much
else!}:

def simple ():
pass # or return

simple() # BORING!

(U) Let play around a bit with a new function ... we shall call this powerful function add .

def add (a, b):

return a+b

add(2, 3)

add(l)

add('a' , 3)

add (' a ' , 'b')

add

def add2 (a, b):

print (a+b)

x = add(2, 3) # What did this do?
X

x = add2(2, 3) # What did this do?
X

(U) Don't forget: function names are variables too.

x = add # What did this do?

add = 7 # And this?

add(2, 3) # We broke this function. A Lesson here.

x(2, 3)

(U) Exercises

Doc ID: 6689693
1. Write an all_the_snacks function that takes a snack (string) and uses the • operator to print it out 100 times. Test your function using

each of the items on your grocery list. What happens if you enter a number into your function? Is the result what you expected?
2. You may have noticed that your all_the_snacks function prints all your snacks squished together. Rewrite all_the_snacks so that it takes

an additional argument spacer . Use + combine your snack and spacer before multiplying. Test your function with different inputs. What
happens if you use strinqs for both snack and spacer ? Both numbers? A string and an integer? Is this what you expected?

3. Rewrite all_the_snacks so that it also takes a variable num that lets you customize the number of times your snack gets printed out.
4. Write an in grocery list function that takes in a grocery_item returns True or False depending on whether the item is on your list.
5. Write a price_matcher function that takes no arguments, but prints a random grocery item and a random price from your price list every time

it is run .
6. Challenqe: modify your price_matcher to return item, price rather than print them. Write a free_change function that calls your

new price_matcher and uses the result to print your item and the absolute value of the change for the item assuming you paid $10.

(U) Arguments, Keyword Arguments, and Defaults
def f (a, b, c):

return (a + b) * c

(U) You can give arguments default values. This makes them optional.

def f (a, b, C=l) :
return (a + b) * c

f(2, 3)

f(2, 3, 2)

(U) You can call arguments by name also.

f(b=2 , a=S)

f(b=2 , c=S)

def g(a=l , b, c):
return (a + b) * c # What happens here?

(U) Exercises

1. Rewrite all_the_snacks so that num amd spacer have defaults of 100 and ', ' respectively. Using your favorite snack as input, try
running your function with no additional input.

2. Try running all_the_snacks withyour favorite snack and the spacer 'I • and no additional inputs. How would you run it while inputing your
favorite snack and 42 for num while keeping the default for spacer ? Can you use this method to enter spacer and num in reverse order?

Doc ID: 6689693

(U) Scope

(U) In programming, scope is an important concept. It is also very useful in allowing us to have flexibility in reusing variable names in function
definitions.

X = 5

def f () :
X = 6

print (x)

X

f()

X

(U) Lets talk about what happened here. Whenever we try to get or change the value of a variable , Python always looks for that variable in the most
appropriate (closest) scope.

(U) So, in the function above, when we declared x = 6 , we were declaring a local variable in the definition of f . This did not alter the
global x outside of the function .
If that is what you want to happen, just use the global keyword.

X = 5

def f ():

global x

X = 6

X

f()

X

(U) Be careful with scope, it can allow you to do some things you might not want to (or maybe you do!), like overriding built-in functions.

l en (' my string is longer than 3')

def len (x) :
return 3

Doc ID: 6689693

len ('my string is longer than 3 ')

(U) input
(U) The input function is a quick way to get data accessed from stdin (user input). It takes an optional string argument that is the prompt to be
issued to the user, and always returns a string. Simple enough!

a = input ('Please enter your name: ')

a

(U) Advanced Function Arguments
(U) Most of the time, you know what you want to pass into your function. Occasionally, it's useful to accept arbitrary arguments. Python lets you do
this, but it takes a little bit of syntactic sugar that we haven't used before.

• List and dictionary unpacking

• List and dictionary packing in function arguments

(U) Exercises
1. Use input to ask for your favorite color and store it in the variable my_color . Use input to ask for your neighbor's favorite color and store

it in the variable neighbor _color .
2. Use input to ask for your favorite number and store it in the variable my_num . Run 2 + my_num . Why does this fail? How can you fix it?
3. Write a "April fool's" color _swapper function that takes my_color and and neighbor _color as inputs and prints a message declaring what

your and your neighbor's favorite colors are respectively. Add a line before the print that swaps the contents of the variables so that now
message is printed with your favorite colors swapped. Run your function and then print the contents of my_color and neighbor _color . How
were you able to swap them in the function without swapping them in your notebook?

4. Challenge: Write a global color _swapper that swaps your colors globally. Run your function and then print the contents
of my_color and neighbor _color . Why might this be a bad idea, even for an April fool's joke?

(U) Review
1. Write a function called 'Volume' which computes and returns the volume of a box given the width , length, and height.
2. Write a function called 'Volume2' which calculates the box volume, assuming the height is 1, if not given.
3. Challange: Import the 'datetime' module. Experiment with the different methods. In particular, determine how to print the current time.

Doc ID: 6689693

Lesson 2 - Function Exercises
0

.
Created almost 3 years ago byl ... -----t'I in COMP 3321

3 355 91

di,M,i · ,

(U) Function Exercises for COMP3321 Lesson 2

Recommendations

(U) Lesson 2 - Functions Exercises
(U) Write a function isDivisibleBy7(num) to check if a number is evenly divisible by 7.
>>> isDivisibleBy7(21)
True
>>> isDivisibleBy7(25)
False

(U) Write a function isDivisibleBy(num,divisor) to check if num is evenly divisible by divisor.
>>> isDivisibleBy(35,7)
True
>>> isDivisibleBy(35,4)
False

(U) Make a function shout(word) that accepts a string and returns that string in capital letters with an exclamation mark.
>>> shout("bananas")
'BANANAS!'

(b) (3) - P . L . 86 - 36

(U) Make a function introduce() to ask the user for their name and shout it back to them. Call your function shout to make this happen.
>>> What's your name?
>>> Bob
HI BOB!

Doc ID: 6689693

Lesson 2 - Variable Exercises
0 ____ _.,.

Created almost 3 years ago byl I in COMP 3321
3 369 126

iMi,H,i , -

(U) Variable Exercises for COMP3321 Lesson 2

Recommendations

.

(U) Lesson 2 - Variables Exercises
(U) Identify the type of each of the following variables, and add the type after each variable in a comment.

a = 2999
b = 90.0
C = "145"

d = "\u0CA0_\ u0CA0"
e = "True"
f = True
g = len ("sample")
h = 100**30

i = 1 >= 1

j = 30%7
k = 30/7
1 = b + 7
m = 128 « 1

n = bin (255)
o = [m,l,k,n]
p = len (o)

(U) What value is in variable my_var at the end of these assignments?
Add a comparison after the last statement in the form of my_val ==

I (b) (3) - P . L . 86 -36 1

Doc ID: 6689693

my_var = 99

my_var += 11

my_var = str (my_var)

my_var *= 2

my_var = len (my_var)

my_var *= 4

Doc ID: 6689693

Lesson 03: Flow Control
0 --------····. Updated over 1 year ago byl I in COMP 3321

3 2 855 381

ftfoM,N

(U) Python flow control with conditionals and loops (if, while, for, range, etc.).

Recommendations

UNCLASSIFIED

(U) Introduction

.
(b) (3)-P.L. 86 - 36 I ··--------­.

(U) If you have ever programmed before, you know one of the core building blocks of algorithms is flow control. It tells your program what to do next
based on the state it is currently in .

(U) Comparisons
(U) First, let's look at how to compare values. The comparison operators are > , >= , < , <= , I= , and == . When working with numbers, they do
what you think: return True or False depending on whether the statement is true or false.

2 < 3

2 > 5

X = 5

X == 6

X != 6

Doc ID: 6689693
(U) Python 2.x will let you try to compare any two objects, no matter how different. The results may not be what you expect. Python 3.x only
compares types where a comparison operation has been defined.

'apple' > ' orange '

' apple ' > ' Orange '

' apple ' > ['orange']

' apple ' > ('orange' ,)

case-sensitive aLphabeticaL

(U) We will leave more discussion of comparisons for later, including how to intelligently compare objects that you create.

(U) Exercises

1. Write a you_won function that randomly picks a number from your price list (9.42, 5.67, 3.25, 13.40, and 7.50) and
prints True or False depending on whether the random number is greater than 10.

2. Write a function snack_check that takes a string snack and returns True or False depending on whether or not it is your favorite snack.

(U) Conditional Execution: ·The if Statement
(U) The if statement is an important and useful tool. It basically says, "If a condition is true, do the requested operations."

def even (n):
if (n % 2 == 0):

print ('! am even!')

even(2)

even(3)

even (' hello ') # That was siLLy

(U) What if we want to be able to say we are not even? Or the user submitted a bad type? We use else and elif clauses.

Doc ID: 6689693

def even (n):
if (type (n) != int):

print ('I only talk about integers')
elif (n % 2 == 0):

print ('I am even!')
else :

print ('I am odd!')

even(2)

even(3)

even('hello')

(U) Exercises

1. Re-write the snack_check to take a string snack and prints an apporpriate response depending on whether the input is your favorite snack
or not.

2. Write an in_grocery_list function that takes in a grocery_item prints a different message depending on whether grocery_i tem is in your
grocery list.

3. Modify in_grocery_list to test if grocery_item is a string. Print a message warning the user if it is not.
4. Challenge: Re-write the you_won function to randomly choose a number from your price list and print appropriate message depending on

whether you won (the number was greater than 10) or not. Also include the amount of change you will be receiving in your message. (Recall
you are winning the amount change you would have owed ...).

5. Advanced challenge: Write a function that imports datetime and uses it to determine the current time. This function should print an
appropriate message based on the time ex: if the current time is between 0900 and 1000, print the message "Morning Lecture time!"

(U) Looping Behavior

(U) The while Loop
(U) The while is used for repeated operations that continue as long as an expression is true.

(U) The famous infinite loop:

while (2 + 2 == 4):
print ('forever')

(U) A mistake that may lead to an infinite loop:

Doc ID: 6689693

i = 0

while (i <= 20):

print(i)

(U) The below is probably a more sensible thing to type.

i = 0

while (i <= 20) :
print (i)
i += 1

(U) break and continue
(U) For more control , we can use break and continue (they work just as in C). The break command will break out of the
smallest while or for loop:

i = 0

while (True) :

i += 1
print (i)
if (i == 20) :

break

(U) The continue command will halt the current iteration of the loop and continue to the next value.

i = 0

while (True) :

i += 1
if (i == 10):

print ("! am 101")

continue
print (i)
if (i == 20):

break

Doc ID: 6689693

(U) The else clause
(U) You can also have an else statement at the end of a loop. It will be run only if the loop completes normally, that is, when the conditional
expression results in False . A break will skip it.

i = 0

while (i < 2):
print (i)
i += 1

else :
print ("This executes after the condition becomes false. ")

print ("Done!")

i = 0

while (i < 2):
print (i)
if True :

break
i += 1

else :
print ("This won't print because the loop was exited early.")

print ("Donel")

(U) Exercises

Hint: you will not need continue or break for these exercises.

1. Previously we printed out many copies of a string using the * operator. Use a while loop to print out 1 0 copies of your favorite snack. Each
copy can be on it's own line, that's fine.

2. Mix and match! Write a while loop that uses the * to print multiple copies of your favorite snack per line. Print out 10 lines with the number
of copies per line corresponding to the line number (your first line will have one copy and your last line will have 10).

3. Challenge: Write a while loop that prints 100 copies of your favorite snack on one single (wrapped) line. Hint: use + .

(U) The for loop
(U) The for loop is probably the most used control flow element as it has the most functionality. It basically says, "for the following explicit items,
do something ." We are going to use the listtype here. More interesting properties of this type will follow in another lesson.

Doc ID: 6689693

for i in (1, 2, 3, 4, 5, 'a' , ' b ' , 'c ' J :
print (i)

(U) The variable i "becomes" each value of the list and then the following code is executed:

for i in (1, 2, 3, 4, 5, 'a' , 'b' , 'c']:
print (i, type (i))

for c in 'orange' :
print (c)

(U) Exercises

1. Write a for loop that prints out each character in the string "blood-oxygenation level dependent functional magnetic resonance imaging"
(Fun fact: this string is the longest entry in WordNet3.1 Index).

2. Take your Qrocery list of five items (or create one). Write a for loop to print out the message "Note to self, buy: " and then the grocery item.
3. Write a for loop that prints out a numbered list of your grocery items.
4. Clearly your favorite snack is more important than the other items on your list. Modify your for loop from Exercise 3 to use break stop

printing once you have found your favorite snack in your list. Question: Could you have achieved the same result without using a break ?
Bonus: if your snack isn't in the list, have your code print a warning at the end.

5. Challenge: use the string method split to write a for loop that prints out each word in the string "blood-oxygenation level dependent
functional magnetic resonance imaging". Hint: run help(str.split)

(U) for Loop Fodder: range and xrange

(U) Ok, that is great...but I want to print 1,000,000 numbers! The range function returns a list of values based on the arguments you provide. This
is a simple way to generate O through 9:

print (range (10))

for i in range (10):
print (i)

for i in range (10, 20) :
print (i)

for i in range (10, 20 , 2):
print (i)

Doc ID: 6689693

for i in range (100, 0, -5):
print (i)

(U) This makes a great tool for keeping a notion of the index of the loop!

a = "mystring 11

for i in range (len (a)):
print (11 The character at position 11 + str(i) + 11 is 11 + a[i])

(U) Incidentally, the enumerate function is the preferred way of keeping track of the loop index:

for (i, j) in enumerate (a) :
print (11 The character at position 11 + str(i) + 11 is 11 + j)

(U) In Python 3, the range function produces an iterator. For now, think of an iterator as an object that knows where to start, where to stop, and
how to get from start to stop, but doesn't keep track of every step along the way all at once. We'll discuss iterators more later.

(U) In Python 2, xrange acts like Python 3's range . range in Python 2 produces a list, so the entire range is allocated in memory. You should
almost always use xrange instead of range in Python 2.

b = range (100000000) # Ohh, that was fast

b

for i in range (10000):
if (i % 2 == 0) :

print (i)

It's just an object!

b = range (0, 1000000, 100)

b

b[0]

b[l]

b[2]

b(-1]

(U) Exercises

Doc ID: 6689693
1. Use range to write a for loop to print out a numbered grocery list.
2. Use enumerate to print out a numbered grocery list. You've now done this three ways. What are some pros and cons to each technique?

There are often several different ways to get the same output! However, usually one is more elegant than the others.
3. Use range to write a for loop that prints out 10 copies of your favorite snack. How does this compare to useing a while loop?
4. ChallenQe: Write a "Guess my number" game that generates a random number and gives your user a fixed number of guesses.

Use input to get the user's guesses. Think about what loop type you might use and how you might provide feedback based on the user's
guesses. Hint: what type does input return? You might need to convert this to a more useful type ... However, now what happens if your
user inputs something that isn't a number?

UNCLASSIFIED

Doc ID: 6689693

Lesson 3 - Flow Control Exercises
(b) (3) -P . L . 86-36 I ---------­.

Updated almost 3 years ago by .. l ----1 in COMP 3321
3 331 157

0

(U) Flow Control Exercises for COMP3321 Lesson 3

Recommendations

(U) Lesson 3 - Flow Control Exercises
(U) Change the loop below so that it prints numbers from 1 to 10.

for i in range (9):
print (i)

(U) Using a for loop and enumerate, write a function getindex(string, character) to recreate the string method .index

"skyscraper" . index('c')
4

geti ndex("skyscraper" , 'c')
#4

(U) Using the shout function from the first set of basic exercises, write a shout_words(sentence) function that takes a string argument and "shouts"
each word on its own line.

shout_words("Everybody likes bananas")
EVERYBODY!

LIKES!

BANANAS!

Doc ID: 6689693
(U) Write an extract_l onger(length, sentence function that takes a sentence and word length, then returns a list of the sentence's words that
exceed the given length. If no words match the length, return False.

extract_longer(S, "Try not to interrupt the speaker.")
['interrupt', 'speaker.']

extract_longer(7, "Sorry about the mess.")
False

Doc ID: 6689693

Lesson 04: Container Data Types
0 (b) (3)- P . L . 86-36

····································
Updated almost 3 years ago by _I _______ I in COMP 3321

3 2 838 415 . .

d\iM:1 111

(U) Lesson 04: Container Data Types

Recommendations

UNCLASSIFIED

(U) Introduction
(U) Now that we've worked with strings and numbers, we turn our attention to the next logical thing: data containers that allow us to build up
complicated structures. There are different ways of putting data into containers, depending on what we need to do with it, and Python has several
built-in containers to support the most common use cases. Python's built-in container types include:

1. list
2. tuple
3. diet
4. set
5. frozenset

(U) Of these, tuple and frozenset are immutable, which means that they can not be changed after they are created, whether that's by addition,
removal , or some other means. Numbers and strings are also immutable, which should make the following statement more sensible:
the variable that names an immutable object can be reassigned, but the immutable object itself can't be changed.

(U) To create an instance of any container, we call its name as a function (sometimes known as a constructor). With no arguments, we get an empty
instance, which isn't very useful for immutable types. Shortcuts for creating non-empty list s, tuple s, diet s, and even set s will be covered in
the following sections.

list ()

Doc ID: 6689693

diet ()

tuple ()

set ()

(U) Many built-in functions and even some operators work with container types, where it makes sense. Later on we'll see the behind-the-scenes
mechanism that makes this work; for now, we'll enumerate how this works as part of the discussion of each separate type.

(U) Lists
(U) A list is an ordered sequence of zero or more objects, which are often of different types. It is commonly created by putting square brackets [
] around a comma-separated list of its initial values:

a = ['spam' , 'eggs' , 5, 3.2, [100, 200, 300]]

fruit = ['Apple' , 'Orange' , 'Pear' , 'Lime']

(U) Values can be added to or removed from the list in different ways:

fruit . append('Banana')

fruit . insert{3, 'Cherry')

fruit . append(['Kiwi' , 'Watermelon'])

fruit . extend{ ['Cherry' , 'Banana'])

fruit . remove('Banana')

fruit

fruit . pop()

fruit . pop{ 3)

fruit

(U) The + operator works like the extend method, except that it returns a new list.

a + fruit

Doc ID: 6689693

a

fruit

(U) Other operators and methods tell how long a list is, whether an element is in the list, and if so, where or how often it is found.

len (fruit)

fruit . append('Apple ')

'Apple ' in fruit

'Cranberry' not in fruit

fruit . count(' Apple')

fruit . index(' Apple ')

fruit . index('Apple ' , 1)

Careful--can cause an error

(U) List Comprehension
(U) Great effort has been to make lists easy to work with. One of the most common uses of a list is to iterate over its elements with a for loop,
storing off the results of each iteration in a new list. Python removes the repetitive boilerplate code from this type of procedure with list
comprehensions. They're best learned by example:

a = [i for i in range (10))

b = [i**2 for i in range (10))

c = [[i, i **2, i **3] for i in range (10))

d = [[i, i **2, i **3) for i in range (10) if i % 2) # conditionals!

e = [[i+j for i in ' abcde '] for j in ' xyz '] # nesting!

(U) Sorting and Reordering

Doc ID: 6689693
(U) Sorting is another extremely common operation on lists. We'll cover it in greater detail later, but here we cover the most basic built-in ways of
sorting. The sorted function works on more than just list s, but always returns a new list with the same contents as the original in sorted order.
There is also a sort method on list s that performs an in-place sort.

fruit . remove(['Kiwi' , ' Watermelon ']) # can't compare List with str
sorted_fruit = sorted (fruit)

sorted_fruit == fruit

fruit . sort()

sorted_fruit == fruit

(U) Reversing the order of a list is similar, with a built-in reversed function and an in-place reverse method for list s. The reversed function
returns an iterator, which must be converted back into a list explicitly. To sort something in reverse , you could combine the reversed and
the sorted methods, but you should use the optional reverse argument on the sorted and sort functions.

r_fruit = list (reversed (fruit))

fruit . reverse()

r_fruit == fruit

sorted(r_fruit, reverse=True)

(U) Tuples
(U) Much like a list , a tuple is an ordered sequence of zero or more objects of any type. They can be constructed by putting a comma­
separated list of items inside parentheses () , or even by assigning a comma-separated list to a variable with no delimiters at all . Parentheses are
heavily overloaded- they also indicate function calls and mathematical order of operations--so defining a one-element tuple is tricky: the one
element must be followed by a comma. Because a tuple is immutable, it won't have any of the methods that change lists, like append or sort .

a = (1 , 2, ' first and second ')

len (a)

sorted (a)

a. index(2)

a. count(2)

Doc ID: 6689693

b = '1' , '2' , '3'

type (b)

c_raw = '1'

c_tuple = '1' ,

c_raw == c_tuple

d_raw = ('d')

d_tuple = ('d' ,)

d_raw == d_tuple

(U) Interlude: Index and Slice Notation
(U) For the ordered containers list and tuple , as well as for other ordered types like str ings, it's often useful to retrieve or change just one
element or a subset of the elements. lndexand slice notation are available to help with this. Indexes in Python always start at 0. We'll start out with a
new list and work by example:

animals = ['tiger' , 'monkey' , 'cat' , 'dog' , 'horse' , 'elephant']

animals[l]

animals[l]

animals[l :3]

'chimpanzee'

animals[3] in animals[l :3]

animals[: 3]

animals [4 :]

animals[-2 :]

animals[l :6 :2]

starts at beginning

goes to the end

uses the optional step parameter

animals[:: -1] == list (reversed (animals))

Doc ID: 6689693
(U) Because slicing returns a new list and not just a view on the list, it can be used to make a copy (technically a shallow copy):

same_animals = animals

different_animals = animals[:]

same_animals[0]

animals[0]

'lion '

different_animals[0] = 'leopard '

different_animals[0] == animals[0]

(U) Dictionaries
(U) A diet is a container that associates keys with values. The keys of a diet must be unique, and only immutable objects can be keys. Values
can be any type.

(U) The dictionary construction shortcut uses curly braces { } with a colon : between keys and values (e.g. my_diet = {key: value, keyl:
valuel}). Alternate constructors are available using the diet keyword. Values can be added, changed, or retrieved using index notation
with keys instead of index numbers. Some of the operators, functions, and methods that work on sequences also work with dictionaries.

bugs = {"ant " : 10, "praying mantis " : 0}

bugs[' fly '] = 5

bugs . update({ 'spider ' : 1})

del bugs[' spider']

' fly ' in bugs

5 in bugs

bugs[' fly ']

Like extend

(U) Dictionaries have several additional methods specific to their structure. Methods that return lists, like items , keys , and values . are not
guaranteed to do so in any particular order, but may be in consistent order if no modifications are made to the dictionary in between the calls.
The get method is often preferable to index notation because it does not raise an error when the requested key is not found; instead, it
returns None by default, or a default value that is passed as a second argument.

Doc ID: 6689693

bugs . items() # List of tuples

bugs . keys()

bugs .values()

bugs . get ('fly')

bugs .get('spider')

bugs .get('spider ' , 4)

bugs . clear()

bugs

(U) Sets and Frozensets
(U) A set is a container that can only hold unique objects. Adding something that's already there will do nothing (but cause no error). Elements of
a set must be immutable (like keys in a dictionary). The set and frozenset constructors take any iterable as an argument, whether it's
a list , tuple , or otherwise. Curly braces { } around a list of comma-separated values can be used in Python 2.7 and later as a shortcut
constructor, but that could cause confusion with the diet shortcut. Two sets are equal if they contain the same items, regardless of order.

numbers set ([l , 1, 1, 1, 1, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 4])

letters set ('TheQuickBrownFoxJumpedOverThelazyDog' . lower())

a = {} # diet

more_numbers = {1, 2, 3, 4 , 5} # set

numbers . add(4)

numbers . add(S)

numbers . update([3, 4, 7])

numbers . pop()

numbers . remove(7)

could be anything

Doc ID: 6689693

numbers . discard(?) # no errror

(U) A frozen set is constructed in a similar way; the only difference is in the mutability. This makes frozen sets suitable as dictionary keys, but frozen
sets are uncommon.

a = frozenset ([l , 1, 1, 1, 1, 3, 3, 3, 3, 32 , 2, 2, 3, 3, 4])

(U) Sets adopt the notation of bitwise operators for set operations like union, intersection, and symmetric difference. This is similar to how
the + operator is used for concatenating list s and tuple s.

house_pets = { 'dog' , 'cat' , 'fish' }

farm_animals = { 'cow' , 'sheep' , 'pig' , 'dog' , 'cat' }

house_pets & farm_animals # intersection

house_pets farm_animals # union

house_pets A farm_animals # symmetric difference

house_pets - farm_animals # asymmetric difference

(U) There are verbose set methods that do the same thing, but with two important difference: they accept list s, tuple s, and other iterables as
arugments, and can be used to update the set in place. Although there are methods corresponding to all the set operators, we give only a few
examples.

farm_animal_list = list (farm_animals) * 2

house_pets . intersection(farm_animal_list)

house_pets . union(farm_animal_list)

house_pets . intersection_update(farm_animal_list)

(U) Comparison of sets is similar: operators can be used to compare two sets, while methods can be used to compare sets with other iterables.
Unlike numbers or strings, sets are often incomparable.

house_pets = { 'dog' , 'cat' , 'fish' }

farm_animals > house_pets

house_pets < farm_animals

Doc ID: 6689693

house_pets . intersection_update(farm_animals)

farm_animals > house_pets

house_pets . issubset(farm_animal_list)

(U) Coda: More Built-In Functions
(U) We've seen how some built-in functions operate on one or two of these container types, but all of the following can be applied to any container,
although they probably won't always work; that depends on the contents of the container. There are some caveats:

• (U) When passed a dictionary as an argument, these functions look at the keys of the dictionary, not the values.

• (U) The any and all functions use the boolean context of the values of the container, e.g. 0 is False and non-zero numbers are True ,
and all strings are True except for the empty string ' ' , which is False .

• (U) The sum function only works when the contents of the container are numbers.

generic_container = farm_animals

all (generic_container)

any (generic_container)

'pi g ' in generic_container

' pig ' not in generic_container

len (generic_container)

max (generic_container)

min (generic_container)

sum([l , 2, 3, 4, 5])

or bugs, animals, etc.

Lesson Exercises

Exercise 1 (Euler's multiples of 3 and 5 problem)

Doc ID: 6689693
If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.

Exercise 2
Write a function that takes a list as a parameter and returns a second list composed of any objects that appear more than once in the original list

• duplicates([1,2,3,6,7,3,4,5,6]) should return [3,6]

• what should duplicates(['cow','pig','goat','horse','pig']) return?

Exercise 3
Write a function that takes a portion mark as input and returns the full classification

• convert_classification('U//FOUO') should return 'UNCLASSIFIED//FOR OFICIAL USE ONLY'

• convert_classification('S//REL TO USA, FVEY') should return 'SECRET//REL TO USA, FVEY'

UNCLASSIFIED

Doc ID: 6689693

Lesson 05: File Input and Output
0

...
Updated almost 2 years ago byl ._ ______ , in COMP 3321

3 3 938 414

IMi:M,i Ill

(U) Lesson 05: File Input and Output

UNCLASSIFIED

Recommendations
I

(U) Introduction: Getting Dangerous

.
(b) (3)- P .L. 86 - 36

(U) As you probably already know, input and output is a core tool in algorithm development and reading from and writing to files is one of the most
common forms. Let's jump right in just to see how easy it is to write a file.

myfile = open (' data.txt' , 'w')
myfile .write("I am writing data to my file")
myfile . close()

(U) And there you have it! You can write data to files in Python. By the way, the variables you put into that open command are the filename (as a
string--do not forget the path) and the file mode. Here we are writing the file , as indicated by the ' w' as the second argument to the open function .

(U) Let tear apart what we actually did.

open ('data. txt ' , 'w')

(U) This actually returns something called a file object. Let's name it!

(U) I.___ _ __,! Opening a file that already exists for writing will erase the original file .

myfile = open ('data.txt' , 'w')

Doc ID: 6689693
(U) Now we have a variable to this file object, which was opened in write mode. Let's try to write to the file:

myfile .write("I am writing data to my file")

myfile . read() # Oops ... notice the error

myfile . close() # Guess what that did ...

(U) There are only a few file modes which we need to use. You have seen ' w' (writing). The others
are ' r ' (reading), ' a ' (appending), ' r+ ' (reading and writing), and ' b ' (binary mode).

myfile = open ('data.txt' , 'r')

myfile . read()

myfile .write("I am writing more data to my file") # Oops again ... check our mode

mydata myfile . read()

mydata # HEY! Where did the data go

myfile . close() # don't be a piggy

(U) A cool way to use contents of a file in a block is with the with command. Formally, this is called a context manager. Informally, it ensures that
the file is closed when the block ends.

with open ('data.txt') as f:
print (f . read())

(U) Using with is a good idea but is usually not absolutely necessary. Python tries to close files once they are no longer needed. Having files open
is not usually a problem, unless you try to open a large number all at once (e.g. inside a loop).

(U) Reading Lines From Files
(U) Here are some of the other useful methods for file objects:

lines_file = open ('fewlines.txt' , 'w')

lines_file .writelines("first\n")

lines_file .writelines(["second\n" , "third\n"])

lines_file . close()

Doc ID: 6689693
(U) Similarly:

lines_file = open ('fewlines.txt' , 'r')

lines_file . readline()

lines_file . readline()

lines_file . readline()

lines_file . readline()

(U) And make sure the file is closed before opening it up again in the next cell

lines_file . close()

(U) Alternately:

lines = open ('fewlines.txt' , 'r') . readlines() # Note the plurality

lines

(U) ~ both read and readline(s) have optional size arguments that limit how much is read. For readline(s) , this may return incomplete
lines.

(U) But what if the file is very long and I don't need or want to read all of them at once. file objects behave as their own iterator.

lines_file = open ('fewlines.txt' , 'r')

for line in lines_file :
print (line)

The below syntax is a very common formula for reading through files. Use the with keyword to make sure everything goes smoothly. Loop through
the file one line at a time, because often our files have one record to a line. And do something with each line.

with open ('fewlines.txt') as my_file:
for line in my_file :

print (line . strip()) # The strip function removes newlines and whitespace from the start and finish

The file was closed upon exiting the with block.

(U) Moving Around With tell and seek

Doc ID: 6689693
(U) The tell method returns the current position of the cursor within the file. The seek command sets the current position of the cursor within the
file.

inputfile = open ('data.txt' , 'r')

inputfile . tell ()

inputfile . read(4)

inputfile . tell()

inputfile . seek(0)

inputfile . read ()

(U) File-Like objects
(U) There are other times when you really need to have data in a file (because another function requires it be read from a file perhaps). But why
waste time and disk space if you already have the data in memory?

(U) A very useful module to make a string into a file-like object is called stringIO . This will take a string and give it file methods
like read and write .

import io

mystringfile = io .StringIO() # For handing bytes, use io.BytesIO

mystringfile . write ("This is my data!") # We just wrote to the object, not a fiLehandLe

mystringfile . read() # Cursor is at the end!

mystringfile . seek(0)

mystringfile . read()

newstringfile = io . StringIO("My data") # The cursor will automatically be set to e

(U) Now let's pretend we have a function that expects to read data from a file before it operates on it. This sometimes happens when using library
functions.

def iprintdata (f):
print (f . read())

iprintdata('mydata ') # Grrr!

my_io = io .StringIO('mydata ')

iprintdata(my_io) # YAYI

Lesson Exercises

Get the data
Copy sonnet from httQs://urn.nsa.ic.gov/t/tx6gm. and paste into sonnet.txt.

Exercise 1
Write a function called file_ capitalize() that takes an input file name and an output file name, then writes each word from the input file with only the

first letter capitalized to the output file. Remove all punctuation except apostrophe .

capitali,e('sonnet.txt', 'sonnet_caps.txt') => capitali,ed words written to sonnet_caps.txt

Exercise 2
Write a function called file_word_count() that takes a file name and returns a dictionary containing the counts for each word. Remove all punctuation

except apostrophe. Lowercase all words. .

file_word_count('sonnet.txt') => { 'it': 4, 'me': 2, ... }

Extra Credit
Write the counts dictionary to a file , one key:value per line.

UNCLASSIFIED

Doc ID: 6689693

Lesson 06: Development Environment and
Tooling .. _-I (-b)- (3-)-- P-.L-. 8- 6--3-6

1 • • • • • ••••• --------······ Created over 3 years ago by I I in COMP 3321
3 1 407 96

(U) Lesson 06: Development Environment and Tooling

Recommendations
'

(U) Package Management
(U) The Problem: Python has a "batteries included" philosophy-it has a comprehensive standard library, but by default, using other packages
leaves something to be desired:

• Python doesn't have a class path , and unless you are root , you can't install new packages for the whole system.

• How do you share a script with someone else when you don't know what packages are installed on their system?

• Sometimes you have to use Project A, which relies on a package that requires awesome-package v.1.1, but you're writing Project B and
want to use some features that are new in awesome-package v.2.0?

• The best-in-class package manager isn't in the Python standard library.

(U) The Solution: virtualenv

(U) The virtualenv package creates virtual environments, i.e. isolated spaces containing their own Python instances. It provides a utility script
that manipulates your environment to activate your environment of choice.

(U) It's already installed and available on the class VM. The -p flag indicates which Python executable to use as the base for the virtual
environment:

Doc ID: 6689693

[______ _, ~]$ virtualenv NEWENV -p /usr/local/bin/python
New python executable in NEWENV ;b:i'.nipyttion ••• ------
Installing Setuptools .. done. I p . L. 86 - 3 6
Installing Pip done. 1.. _____ _.

[
------- • 'It • h . h ... ; : i ,t -t ".i -• ~
______ _. -].p w ic python • • · ·. ·. ·. ·. ·. • .: •. ••····,,'

• • • • • • • • • • • • • • • • • • •• •• • I
/usr/local/bin/python • • • · · · · · · · · .. • • · · · · · • . : : • . ······. . ..
[::::::::.:.:.:.:.:.:.~ ~]$ source NEWENV£b_ig/.at:t-:i.'la"t~ • •••••• ·.···• • • • : • •
(NEWENV)[______ ..,,. .:'.]$ which python •• • •.•.•.•••• • • ... ·.·.·· ... ~/NEWENV/bin/python •••• _-_- •• • •
(NEWENV)[~•------j ~~i" aea~tivate [~]i

. . . .

.

(U) The virtualenv package can be downjoade.p .and ;,_;n (ilS a s~ript to create a virtual environment based on any recent Python installation. A
virtual environment has the package manager pip pr&-ihstalled , which can be hooked into the internal mirror of the .EY.thon Package Index
(eY.PI) by exporting the correct a9dress·t~ the. P~INDEX_URL environment variable:
------~ ,:].$ ech9 -$Pf P._INDEX_URL

http://bbtux022.gp;~r~j.~sa . ic.gov/PYPI
[______ ~] $ python

Python 2.7.S (default, Nov 6 2013, 10:23:48)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-3)] on linux2
Type "help", "copyright", "credits" or "license" for more information.

import requests

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ImportError: No module named requests

exit ()

Doc ID: 6689693

[______ -. ~]$ source NEWENV/bin/activate

[::::::::======--... ~Ji :s~~rf~ ~~w:E~Vi~i1,~a:c1i:'~t:e: 1 , 1 1 1 1 1 ------

(NEWENV) [________ --;]j .P.iP. .i ~sl~l }- . r!?<J U!? ~t .s •••••••••••••••••••••••••••••••• ·I p . L. s 6-3 6 l
Downloading/unpacking requests _

Downloading requests-2.0.0.tar . gz (362kB): 362kB downloaded •• • .,", •
Running setup. py egg_info for package requests • • "•. :•• •

Installing collected packages: requests
Running setup.py install for requests

Successfully installed requests
Cleaning up... • •

. . . .
(NEWENV)[.._ _____ _:)$ python

.

.

. . .

.
Python 2.7.5 (default, Nov 6 2013, 10:23:48) • •
[GCC 4.4.7 20120313 (Red Hat 4.4.7-3)) on linux2 •
Type "help", "copyright", "credits" or "license" for more in-Por1Aation. • . ..
import requests

requests ._ version_

'2.0.0'

import sys

sys . path

.. ..
..
.. ..

..
.. ..

..
..

.

.. ..

• • • " •• ♦ ♦: •
♦ ., ♦ ••

·- # • • •

[' ·, '/homej f ~EW~ ~ti-i{~b/python27.zi~~ , '/home/I f NEWENV/}ib/python2.7', '/home/I ~NEWENV/lib/pyth~n2.7/plat-
linux2', '/home~ J7NEWENV/lib/pyth~n2.7/lib-tk', '/home/I ~ NEWENV/lib/python2.7/lib-old', '/home/I ~ NEWENV/li
b/python2.7/lib-dynJ.~ad', '/usr/local{iib/python2.7', '/usr/local/lib/python2.7/plat-linux2', '/usr/local/lib/python2.7/lib-t
k', '/home/I f;NEWENV/lib/pythpni.7/site-packages')

exit ()

(NEWENV) [.._ ____ ___.

requests==2.0.0
wsgiref==0.1.2

~)$ pip freeze

Doc ID: 6689693
Now we have a place to install custom code and a way to share it!

• Develop code inside ~/NEWENV/lib/python2.7/site-packages

• Capture installed packages with pip freeze » requirements. txt and install them to a new virtualenv with pip install -r
requirements. txt .

(U) The Ultimate Package
(U) !Python is an alternative interactive shell for Python with lots of cool features, among which are:

• tab completion,

• color output,

• rich history recall ,

• better help interface,

• 'magic' commands,

• a web-based notebook interface with easy-to-share files, and

• distributed computing (don't ask about this)

(U) To get started :

Doc ID: 6689693

(NEWENV)(______ ,._ ~]$ pip install ipython
Downloading ipython-1.1. 0. t~r•. gz

0

(8°. 7M°'sJ :• 8. 71'18" t1c:Mnl'Oades •
Successfully installed ipython
Cleaning up ...
(NEWENV)[______ .:n °i'python° • • •••••••

.
········J~I_P_._L_._s_6_-3_6_

. ,i
.s

•' Python 2.7.5 (default, Nov 6 2013, 10:23:48) • #
• I

• I Type "copyright", "credits" or "license" for more information. * I

IPython 1.1.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.

* I
t I

t I
t I

$ I
i I

%quickref -> Quick reference.
\ I

• \ t ~. :
~ : help -> Python's own help system.

object? -> Details about ' object', use 'object??' for extra details.
. : : . . : . . ~

♦ • :

In [1]: ls
. . : . . : . . .

BASE3/ Hello World.html Hello World.ipynb NEWENV/

In[2]: hist
ls
hist

. . . .
• • • ♦

♦ • • •
♦ • • •

• ••• ♦ •
• • • ♦

In(3]: import os
.

In(4]: os.path #press tab

.
. . ..

os.path os.pathconf

.. . .
os,pithconf_Danfes os.pathsep

In (4): os.path

.
.

(U) To use the web interface, you ha~~ <to install SUfilplemental packages:
(NEWENV)(-------< ~i$ pip inEt.a11 pyzmq tornado jinja2 pygments
(NEWENV)(~]$ ipythoo• notebook --no-mathjax

(U) Just two more packages are re6Juired to get awesome inline graphics
(NEWENV) (______ _. ..-1$ pip install numpy
(NEWENV)(~]$ pip install matplotlib

Doc ID: 6689693

Lesson 07: Object Orienteering: Using Classes
O • ,-(-b -) -(3_) ___ p _ __ L ___ 8_6 ___ 3_6 __

Updated 9 months ago byl I in c·oMP 3321
3 4 721 356

MitH,N fl.II

(U) Introduction to classes, objects, and inheritance in Python.

Recommendations

UNCLASSIFIED

(U) Introduction
(U) From the name of it you can see that object-oriented programming is oozing with abstraction and complication. Take heart: there's no need to
fear or avoid object-oriented programming in Python! It's just another easy-to-use, flexible , and dynamic tool in the deep toolbox that Python makes
available. In fact, we've been using objects and object oriented concepts ever since the first line of Python code that we wrote, so it's already
familiar. In this lesson, we'll think more deeply about what it is that we've been doing all along, and how we can take advantage of these ideas.

(U) Consider, for example, the difference between a function and a method:

name = "Mark"

len (name) # function

name . upper() # method

(U) In this example, name is an instance of the str type. In other words, name is an object of that type. An object is just a convenient wrapper
around a combination of some data and functionality related to that data, embodied in methods. Until now, you've probably thought of
every str just in terms of its data, i.e. the literal string "Mark" that was used to assign the variable. The methods that work with name were
defined just once, in a class definition, and apply to every string that is ever created . Methods are actually the same thing as functions that
live inside a class instead of outside it. (This paragraph probably still seems really confusing. Try re-reading it at the end of the lesson!)

Doc ID: 6689693

(U) Your First class
(U) Just as the keyword def is used to define functions, the keyword class is used to define a type object that will generate a new kind of object,
which you get to name!. As an ongoing example, we'll work with a class that we'll choose to name Person :

class Person (object) :
pass

type (Person)

type (Person) == type (int)

nobody = Person()

type (nobody)

(U) At first, the Person class doesn't do much, because it's totally empty! This isn't as useless as it seems, because, just like everything else in
Python, classes and their objects are dynamic. The (object) after Person is not a function call ; here it names the parent class. Even though
the Person class looks boring, the fundamentals are there:

• the Person class is just as much of a class as int or any other bu ilt-in,

• we can make an instance by using the class name as a constructor function , and

• the type of the instance nobody is Person , just like type(l) is int .

(U) Since that's about all we can do, let's start over, and wrap some data and functionality into the Person :

class Person (object) :
species = "Homo sapiens"
def talk (self) :

return "Hello there, how are you?"

nobody = Person()

nobody . species

nobody . talk()

(U) It's very important to give any method (i.e. function defined in the class) at least one argument, which is almost always called self . This is
because internally Python translates nobody. talk() into something like Person. talk(nobody) .

(U) Let's experiment with the Person class and its objects and do things like re-assigning other data attributes.

somebody = Person()

Doc ID: 6689693

somebody . species = 'Homo internetus'

somebody . name = "Mark"

nobody . species

Person . species = "Unknown"

nobody . species

somebody . species

Person . name = "Unknown"

nobody . name

somebody . name

del somebody . name

somebody . name

(U) Although we could add a name to each instance just after creating it, one at a time, wouldn't it be nice to assign instance-specific attributes like
that when the object is first constructed? The _ini t_ function lets us do that. Except for the funny underscores in the name, it's just an ordinary
function; we can even give it default arguments.

class Person (object):
species = "Homo sapiens"
def _init_(self, name="Unknown" , age=18) :

self . name = name
self . age = age

def talk (self) :
return "Hello, my name is {}." .format (self . name)

mark = Person("Mark" , 33)

generic_voter = Person()

generic_worker = Person(age=41)

generic_worker . age

Doc ID: 6689693

generic_worker . name

(U) In Python , it isn't unusual to access attributes of an object directly, unlike some languages (e.g. Java), where that is considered poor form and
everything is done through getter and setter methods. This is because in Python, attributes can be added and removed at any time, so the getters
and setters might be useless by the time that you want to use them.

mark .favorite_color = "green"

del generic_worker . name

generic_worker . name

(U) One potential downside is that Python has no real equivalent of private data and methods; everyone can see everything. There is a
polite convention: other developers are supposed to treat an attribute as private if its name starts with a single underscore (_). And there is also
a trick: names that start with two underscores (_) are mangled to make them harder to access.

(U) The _init_ method is just one of many that can help your class behave like a full-fledged built-in Python object. To control how your object
is printed, implement _str _ , and to control how it looks as an output from the interactive interpreter, implement _repr _ . This time, we won't
start from scratch ; we'll add these dynamically.

def person_str (self):
return "Name: {0}, Age: {1}" .format (self . name, self . age)

Person ._ str_ = person_str

def person_repr (self) :
return "Person('{0}',{1})" .format (self . name, self . age)

Person ._ repr_ = person_repr

print (mark) # which special method does print use?

mark # which special method does Jupyter use to auto-print?

(U) Take a minute to think about what just happened:

• We added methods to a class after making a bunch of objects, but every object in that class was immediately able to use that method.

• Because they were special methods, we could immediately use built-in Python functions (like str) on those objects.

(U) Be careful when implementing special methods. For instance, you might want the default sort of the Person class to be based on age. The
special method _lt_(self,other) will be used by Python in place of the built-in lt function, even for sorting. (Python 2 uses _cmp_ instead.)
Even though it's easy, this is problematic because it makes objects appear to be equal when they are just of the same age!

Doc ID: 6689693

def person_eq (self, other):
return self . age == other . age

Person ._eq_ = person_eq

bob = Person("Bob", 33)

bob == mark

(U) In a situation like this, it might be better to implement a subset of the rich comparison methods, maybe just _lt_ and _gt_ , or use a
more complicated _eq_ function that is capable of uniquely identifying all the objects you will ever create.

(U) While we've shown examples of adding methods to a class after the fact, note that it is rarely actually done that way in practice. Here we did
that just for convenience of not having to re-define the class every time we wanted to create a new method. Normally you would just define all class
methods under the class itself. If we were to do so with the _str _ , _repr _ , and _eq_ methods for the Person class above, the class would
like the below:

class Person (object):
species = "Homo sapi ens"
def _init_(self, name="Unknown", age=18) :

self . name = name
self . age = age

def talk (self):
return "Hello , my name i s {} ." .format (self . name)

def _str_(self):
return "Name : {0}, Age : {1}" .format (self . name, self . age)

def _repr_(self) :
return "Person('{0}' , {1}) " . format (self . name, self . age)

def _eq_(self , other) :
return self . age == other . age

(U) Inheritance
(U) There are many types of people, and each type could be represented by its own class. It would be a pain if we had to reimplement the
fundamental Person traits in each new class. Thankfully, inheritance gives us a way to avoid that. We've already seen how it
works: Person inherits from (or is a subclass of) the object class. However, any class can be inherited from (i.e. have descendants) .

Doc ID: 6689693

class Student (Person):
bedtime = 'Midnight'
def do_homework (self):

import time
print ("I need to work.")
time . sleep(5)
print ("Did I just fall asleep?")

tyler = Student("Tyler" , 19)

tyler . species

tyler . talk()

tyler .do_homework()

(U) An object from the subclass has all the properties of the parent class, along with any additions from its own class definition. You can still easy to
override behavior from the parent class easily--just create a method with the same name in the subclass. Using the parent class's behavior in the
child class is tricky, but fun , because you have to use the super function.

class Employee (Person):
def talk (self):

talk_str = super (Employee, self) . talk()
return talk_str + " I work for {}" . format (self . employer)

fred = Employee("Fred Flintstone" , 55)

fred . employer = "Slate Rock and Gravel Company"

fred . talk()

(U) The syntax here is strange at first. The super function takes a cl ass (i.e. a type) as its first argument, and an object descended from that
class as its second argument. The object has a chain of ancestor classes. For fred , that chain is [Employee, Person, object] .
The super function goes through that chain and returns the class that is after the one passed as the function's first argument.
Therefore, super can be used to skip up the chain , passing modifications made in intermediate classes.

(U) As a second, more common (but more complicated) example, it's often useful to add additional properties to subclass objects in the constructor.

Doc ID: 6689693

class Employee (Person):
def _init_(self, name, age, employer):

super (Employee, self) ._init_(name, age)
self . employer = employer

def talk (self):
talk_str = super (Employee, self) . talk()
return talk_str + " I work for {}" .format (self . employer)

fred = Employee("Fred Flintstone" , 55 , "Slate Rock and Gravel Company")

fred . talk()

(U) A cl ass in Python can have more than one listed ancestor (which is sometimes called polymorphism). We won't go into great detail here, aside
from pointing out that it exists and is powerful but complicated.

class StudentEmployee(Student, Employee):
pass

ann = StudentEmployee("ann" , 58 , "Family Services")

ann . talk()

bill = StudentEmployee("bill" , 20) # what happens here? why?

(U) Lesson Exercises

(U) Exercise 1

(U) Write a Query class that has the following attributes:

• classification

• justification

• selector

(U) Provide default values for each attribute (consider using None). Make it so that when you print it, you can display all of the attributes and their
values nicely.

your class definition here

(U) Afterwards, something like this should work:

Doc ID: 6689693

queryl = Query("+lii/,'liiI,','Aliib. ::i;:g UliiO.; F''lii¥" , "Primary email address of Zendian diplomat" , "ileona@stato.gov . zd")

print (queryl)

(U) Exercise 2

(U) Make a RangedQuery class that inherits from Query and has the additional attributes:

• begin date

• end date

(U) For now, just make the dates of the form YYYY-MM-DD. Don't worry about date formatting or error checking for now. We'll talk about
the datetime module and exception handling later.

(U) Provide defaults for these attributes. Make sure you incorporate the Query class's initializer into the RangedQuery initializer. Ensure the new
class can also be printed nicely.

your class definition here

(U) AftP.rw~rrls. this shoulrl work:

query2 = RangedQuery("TS//SI//REL TO ~s•, F¥EV", "Primary IP address of Zendian diplomat" , "10.254.18.162" , "2016-12-01" , "201f

►

print (query2)

(U) Exercise 3

(U) Change the Query class to accept a list of selectors rather than a single selector. Make sure you can still print everything OK.

UNCLASSIFIED

Doc ID: 6689693

Lesson 07: Supplement
0

Updated 11 months ago by-1 ---~, in COMP 332°1
3 84 40

.

(U) Supplement to lesson 07 based on exercises from previous lectures.

'

Recommendations
I

.

You may have written a function like this to check if an item is in your grocery list and print something snarky if it's not:

def in_my_list (item) :
my_list = ['apples ' , ' milk ' , ' butter ' , ' orange juice']
if item in my_list:

return 'Got it! '
else :

return 'Nope! '

in_my_list('apples ')

in_my_list('chocolate ')

(b) (3)- P .L. 86 - 36

But what if I really wanted chocolate to be on my list? I would have to rewrite my function . If I had written a class instead of a function , I would be
able to change my list.

class My_list (object) :
my_list = ['apples ' , ' milk ' , 'butter' , ' orange juice ']
def in_my_list (self,item):

if item in self . my_list :
return ' Got it!'

else :
return ' Nope I '

Doc ID: 6689693

december = My_list()

december . in_my_list('chocolate')

december .my_list =december . my_list +['chocolate']

december . in_my_list('chocolate')

Now I have a nice template for grocery lists and grocery list behavior

jan = My_list()

december .my_list

jan . my_list

This isn't helpful:

print (december)

So we overwrite the _str_ function we inherited from object:

class My_list (object):
my_list = [' apples ' , ' milk' , 'butter ' , ' orange juice ']

def _str_(self):
return 'My list : {}' . format (' , ' . join(self .my_list))

def _repr_(self):
return self ._str_()

def in_my_list (self,item):
if item in self .my_list:

return ' Got it!'
else :

return 'Nope ! '

december = My_list()
print (december)

december

Maybe I also want to be more easily test if my favorite snack is on the list...

Doc ID: 6689693

class My_list (object):
my_list = ['apples' , 'milk' , 'butter' , 'orange juice']
def _init_(self ,snack=' chocolate'):

self . snack = snack
def _str_(self):

return ' My list : {} ' .format (', ' . join(self . my_list))

def in_my_list (self,item):
if item in self . my_list:

return 'Got it ! '
else :

return ' Nope I '
def snack_check (self) :

return self . snack in self . my_list

#My favorite snack is chocolate .. . But in january I 'm going to pretend it's oranges
jan = My_list('apples')
jan .snack_check()

#But in February, I'm back to the default
feb = My_list()
feb .snack_check()

About that object. ..

dir (object)

These are all the things you inherit by subclassing object.

class caps_list (My_list):
def in_my_list (self,item):

response = super (caps_list, self) . in_my_list(item)
return response . upper()

shouty = caps_list()

shouty . in_my_list('chocolate')

dir (caps_list)

You can also call the super class directly, like so:

Doc ID: 6689693

class caps_list (My_list):
def in_my_list (self,item):

But you still have to pass self
response = My_list . in_my_list(self ,item)
return response . upper()

shouty = caps_list()
shouty . in_my_list('chocolate ')

Super actually assumes the correct things ... Most of the time.

class caps_list (My_list):
def in_my_list (self,item):

response = super () . in_my_list(item)
return response . upper()

shouty = caps_list()
shouty . in_my_list(' chocolate ')

help(super)

Doc ID: 6689693

Lesson 08: Modules, Namespaces, and
Packages

0 .
Updated over 2 years ago by_l ______ I in C0°MP 3321

3 2 464 207

fftiiM,F

(UHFOUO) A lesson on Python modules, namespaces, and packages for COMP3321 .

Recommendations

.........

UNCLASSIFIED//FOR OFFICIAL USE ONLY

(U) Modules, Namespaces, and Packages
(U) We have already been using modules quite a bit -- every time we've run import , in fact. But what is a module, exactly?

(U) Motivation

(b) (3)- P .L . 86 - 36

(U) When working in Jupyter, you don't have to worry about your code disappearing when you exit. You can save the notebook and share it with
others. A Jupyter notebook kind of behaves like a python script: a text file containing Python source code. You can give that file to the python
interpreter on the command line and execute all the code in the file (kind of like "Run All" in a Jupyter notebook):

$ python awesome.py

(U) There are a few significant limitations to sharing code in Jupyter notebooks, though:

1. what if you want to share with somebody who has python installed but not Jupyter?
2. what if you want to share part of the code with others (or reuse part of it yourself)?

Doc ID: 6689693
3. what if you're writing a large, complex program?

(U) All of these do have native solutions in Jupyter:

1. convert the notebook to a script (File> Download as> Python)
2. copy-paste ... ?
3. make a big, messy notebook ... ?

(U) ... but they get unwieldy fast. This is where modules come in.

(U) Modules
(U) At its most basic, a module in Python is really just another name for a script. It's just a file containing Python definitions and statements. The
filename is the module's name followed by a . py extension. Typically, though, we don't run modules directly - we import their definitions into our
own code and use them there. Modules enable us to write modular code by organizing our program into logical units and putting those units in
separate files. We can then share and reuse those files individually as parts of other programs.

(U) Standard Modules

(U) Python ships with a library of standard modules, so you can get pretty far without writing your own. We've seen some of these modules already,
and much of next week will be devoted to learning more about useful ones. They are documented in full detail in the Eython Standard LibraJY.
reference.

(U) An awesome example

(U) To understand modules better, let's make our own. This will put some Python code in a file called awesome . py in the current directory.

contents = ' ' '
class Awesome(object):

def _init_(self, awesome_thing):
self.thing= awesome_thing

def _str_(self):
return "{0.thing} is awesome! !!".format(self)

a= Awesome("Everything")
print(a)

with open ('awesome.py ' , 'w') as f:
f .write(contents)

Doc ID: 6689693
(U) Now you can run python awesome. py on the command line as a Python script.

(U) Using modules: import

(U) You can also import awesome.py here as a module:

import awesome

(U) Note that you leave out the file extension when you import it. Python knows to look for a file in your path called awesome. py .

(U) The first time you import the module, Python executes the code inside it. Any defined functions, classes, etc. will be available for use. But notice
what happens when you try to import it again:

import awesome

(U) It's assumed that the other statements (e.g. variable assignments, print) are there to help initialize the module. That's why the module is only
run once. If you try to import the same module twice, Python will not re-run the code -- it will refer back to the already-imported version. This is
helpful when you import multiple modules that in tum import the same module.

(U) However, what if the module changed since you last imported it and you really want to do want to re-import it?

contents = ' ' '

class Awesome(object):
def _init_(self, awesome_thing):

self.thing= awesome_thing
def _str_(self):

return "{0.thing} is awesome!ll".format(self)

def cool(group):
return "Everything is cool when you're part of {0}".format(group)

a= Awesome("Everything")
print(a)

with open (' awesome.py' , 'w') as f:
f .write(contents)

(U) You can bring in the new version with the help of the import lib module:

import importlib
importlib . reload (awesome)

Doc ID: 6689693
(U) Calling the module's code

(U) The main point of importing a module is so you can use its defined functions, classes, constants, etc. By default, we access things defined in
the awesome module by prefixing them with the module's name.

print (awesome .Awesome("A Nobel prize"))

awesome . cool("a team")

print (awesome . a)

(U) What if we get tired of writing awesome all the time? We have a few options.

(U) Using modules: import

(U) First, we can pick a nickname for the module:

import awesome as awe

print (awe .Awesome("A book of Greek antiquities"))

awe .cool("the Python developer community")

print (awe .a)

as

(U) Using modules: from import

(U) Second, we can import specific things from the awesome module into the current namespace:

from awesome import cool

cool("this class")

print (Awesome("A piece of string")) # will this work?

print (a) # will this work?

(U) Get everything: from _ import *

(U) Finally, if you really want to import everything from the module into the current namespace, you can do this:

Doc ID: 6689693

from awesome import * # BE CAREFUL

(U) Now you can re-run the cells above and get them to work.

(U) Why might you need to be careful with this method?

what if you had defined this prior to import?
def cool ():

return "Something important is pretty cool"

cool()

(U) Get one thing and rename: from _ import _ as _

(U) You can use both from and as if you need to:

from awesome import cool as coolgroup

cool()

coolgroup("the A team")

(U) Tidying up with main
(U) Remember how it printed something back when we ran import awesome ? We don't need that to print out every time we import the module.
(And really aren't initializing anything important.) Fortunately, Python provides a way to distinguish between running a file as a script and importing it
as a module by checking the special variable _ name_ . Let's change our module code again:

Doc ID: 6689693

contents =
class Awesome(object):

def _init_(self, awesome_thing):
self.thing= awesome_thing

def _str_(self):
return "{0.thing} is awesome!!l".format(self)

def cool(group):
return "Everything is cool when you're part of {0}" . format(group)

if _name_ -- _main_
a= Awesome("Everything")
print(a)

with open ('awesome.py ' , 'w ') as f:
f .write(contents)

(U) Now if you run the module as a script from the command line, it will make and print an example of the Awesome class. But if you import it as a
module, it won't -- you will just get the class and function definition.

importlib . reload (awesome)

(U) The magic here is that _name_ is the name of the current module. When you import a module, its _name_ is the module name
(e.g. awesome), like you would expect. But a running script (or notebook) also uses a special module at the top level called _main _

_ name_

(U) So when you run a module directly as a script (e.g. python awesome.py), its _name_ is actually _main_ , not the module name any longer.

(U) This is a common convention for writing a Python script: organize it so that its functions and classes can be imported cleanly, and put the "glue"
code or default behavior you want when the script is run directly under the _name_ check. Sometimes developers will also put the code in a
function called main() and call that instead, like so:

def main ():
a = Awesome("Everything")
print (a)

if _name_ -- _main_
main()

Doc ID: 6689693

(U) Namespaces
(U) In Python, namespaces are what store the names of all variables, functions, classes, modules, etc. used in the program. A namespaces kind of
behaves like a big dictionary that maps the name to the thing named.

(U) The two major namespaces are the global namespace and the local namespace. The global namespace is accessible from everywhere in the
program. The local namespace will change depending on the current scope -- whether you are in a function, loop, class, module, etc. Besides local
and global namespaces, each module has its own namespace.

(U) Global namespace

(U) dir() with no arguments actually shows you the names in the global namespace.

dir ()

(U) Another way to see this is with the globals() function, which returns a dictionary of not only the names but also their values.

sorted (globals () . keys())

dir () == sorted (globals () . keys())

globals ()['awesome ']

globals ()['cool')

globals ()['cool group ']

(U) Local namespace

(U) The local namespace can be accessed using locals () , which behaves just like globals () .

(U) Right now, the local namespace and the global namespace are the same. We're at the top level of our code, not inside a function or anything
else.

globals () == locals ()

(U) Let's take a look at it in a different scope.

Doc ID: 6689693

sound/
init.py
formats/

init.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py

effects/
init.py
echo.py
surround.py
reverse.py

filters/
init.py
equalizer.py
vocoder.py
karaoke.py

Top-level package
Initialize the sound package
Subpackage for file format conversions

Subpackage for sound effects

Subpackage for filters

(U) You can access submodules by chaining them together with dot notation:

import sound.effects.reverse

(U) The other methods of importing work as well:

from sound.filters import karaoke

(U) _init_.py

(U) What is this special _init_.py file?

• (U) Its presence is required to tell Python that the directory is a package

• (U) It can be empty, as long as it's there

• (U) It's typically used to initialize the package (as the name implies)

Doc ID: 6689693
{U) _ini t_. py can contain any code, but it's best to keep it short and focused on just what's needed to initialize and manage the package. For
example:

• (U) setting the _all_ variable to tell Python what modules to include when someone runs from package import *

• (U) automatically import some of the submodules so that when someone runs import package , then they can run package. function rather
than package.submodule.function

(U) Installing packages
(U) Packages are actually the common way to share and distribute modules. A package can contain a single module -- there is no requirement for it
to hold multiple modules. If you're wanting to work with a Python module that is not in the standard library (i.e. not installed with Python by default),
then you will probably need to install the package that contains it. Python developers_ don't usually share or install individual module files.

(U) pip and PyPI

{U) On the command line, the standard tool for installing a package is pip , Python's package manager. { pip ships with Python by default
nowadays, but if you're using an older version, you may have to install it yourself.) To use pip , you need to configure it to point at a package
repository. On the outside, the big repository everyone uses is called PyPI (a.k.a. the Cheese Shop).

(U//FOUO) REPOMAN and nsa-pip

(UMFOUO) 13.EPOMAN also imports and hosts a mirror of PyPI on the high side. Additionally, there is a nsa-pip server that connects to both
REPOMAN's PyPI mirror and a variety of internal NSA-developed packages hosted on Gitlab.

• (UNFOUO) List of internal NSA r2ackages

• {UNFOUO) Links to some NSA ~ge docs

(U) ipydeps & pypki2

(UltFOUOt If you are working in a Jupyter notebook, it can be awkward trying to install packages from the command line with pip and then use
them . Instead, ipydeps is a module that allows you to install packages directly from the notebook. It also uses the pypki2 module behind the
scenes to handle HTTPS connections that need your PKI certificates.

import ipydeps
ipydeps . pip('prettytable')

I (b) (3)-P . L . 86-36

. . .
{UlfFOUO) Another thing that ipydeps does behind the scenes is try to install operating s_ystem '(noh--Pyth~n) dependencies that the package
needs in order to install and run correctly. That is manually configured ~Y. ttia Jupyt~r·te~m here at NSA. If you run into trouble installing a package
with ipydeps in Jupyter on LABBENCH, contac~ land provide the name of the package you are trying to install and the errors
you are seeing.

Doc ID: 6689693

Modules and Packages
0

.
Updated almost 3 years ago byl ______ l i~ C0°MP 3321

3 307 60

ml · ,. · ·· %1:H:I

(U) Lesson 08: Modules and Packages

Recommendations

.
(b) (3)- P . L . 86-36

(U) I see you like Python, so I put Python in your Python
(U) We've seen how to write scripts; now we want to reuse the good parts. We've already used the import command, which lets us piggyback on
the work of others-either through Python's extensive standard library or through additional, separately-installed packages. It can also be used to
proactively leverage the long tail of our own personal production . In this lesson, we cover, in much greater depth, the mechanics and principles of
writing and distributing modules and packages. Suppose you have a script named my_ funcs. py in your current directory. Then the following works
just fine:

import my_funcs

import my_funcs as m

import importlib
importlib . reload (m)

from my_funcs import string_appender

from my_funcs import * # BE CAREFUL

(U) If you change the source file my_funcs. py in between import commands, you will have different versions of the functions imported. So what's
going on?

(U) Namespaces

Doc ID: 6689693
(U) When you import a module (what we used to call merely a script), Python executes it as if from the command line, then places variables and
functions inside a namespace defined by the script name (or using the optional as keyword). When you from <module> import <name> , the
variables are imported into your current namespace. Think of a namespace as a super-variable that contains references to lots of other variables, or
as a super-class that can contain data, functions, and classes.

(U) After import, a module is dynamic like any Python object; for example, the reload function takes a module as an argument, and you can add
data and methods to the module after you've imported it (but they won't persist beyond the lifetime of your script or session).

import my_funcs as m

def silly_func{x) :
return "Silly {}l" .format (x)

m. silly_func = silly_func

m. silly_func("Mark")

Silly Mark!

(U) In contrast, the from <module> import <function> command adds the function to the current namespace.

(U) Preventing Excess Output: The Magic of

(U) Suppose you have a script that does something awesome, called awesome. py :

class Awesome(object):
def _init_(self, awesome_thing):

self.thing = awesome_thing
def _ str_(self):

return "{0.thing} is AWESOME.".format(self)

main

I p . L.
a = Awesome("BASE Jumping")
print(a)

....... -.....
(U) This can be executed from the command line qr jroportec:1: • • • ••• • • •

(VENV)r1 i] i
0

p;t
0

hon awesome : p"y
0

• •

BASE Jumping is AWESOME •••••••

(VENV)f1 1]$ ~ython

86 - 36

I

Doc ID: 6689693

import awesome

BASE Jumping is AWESOME.

a

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name ' a' is not defined

awesome . a

<awesome.Awesome object at 0x7fa222a8b410>

print (awesome . a)

BASE Jumping is AWESOME.

(U) You don't want that print statement to execute every time you import it. Of equal importance, awesome. a is probably extraneous within an
import. Let's fix it to get rid of those when you import the module, but keep them when you execute the script.

class Awesome(object):
def _init_(self, awesome_thing):

self.thing = awesome_thing
def _str_(self):

return "{0.thing} is AWESOME.".format(self)

if _ name_ -- _main_
a = Awesome("BASE Jumping")

print(a)

(U) We can do even better. There are some situations, e.g. profiling or testing, where we would want to import the module, then look at what would
happen if we run it as a script. To enable that, move the main functionality into a function called main() :

Doc ID: 6689693

class Awesome(object):
def _init_(self, awesome_thing):

self.thing= awesome_thing
def _str_(self):

return "{0.thing} is AWESOME.".format(self)

def main():
a= Awesome("BASE Jumping")
print(a)

if _name_ -- _main_
main()

(U) From Modules to Packages
(U) A single Python module corresponds to a file . It's not hard to imagine a situation where you have several related modules that you want to
group together in the equivalent of a folder; the Python term for this concept is a package. We make a package by

• creating a folder

• putting scripts/modules inside it

• adding some Python Magic (which obviously will involve _ in some way, shape, or form)

(U) For example, we'll put awesome. py in a package called feelings-later on, we'll add terrible. py and totally _rad. py The directory structure
is:

feelings/
1-- awesome.py
1-- _init_.py
L- _main_.py

(U) The _init_. py file is REQUIRED; without it, Python won't identify this folder as a package. However, _main_. py is optional but nice; if you
have it, you can type python feelings and the contents of _main_. py will be executed as a script. (NB: Now you can postulate on what if
name == '_main_' : is really doing.

(U) The _init_. py file can contain commands. Much like the _init_() function of a class , the _init_.py is executed immediately
after importing the package. One common use is to expose modules as package attributes; all this takes is import <module_name> in the
package's _init_. py file .

Doc ID: 6689693

(U) Onward to the Whole World
Pretty soon, you'll want to share the feelings packages with a wider audience. There are thousands of people who want to do Awesome stuff, but
don't have the time to make their own version, which wouldn't be as good as yours anyway, so they're counting on you to provide this package in a
convenient, easy-to-install manner.

(U) Shareable Packages

(U) The _setuptools package (which is built on distutils), used in conjunction with virtual environments and publicly accessible repositories in
revision control systems make sharing your work as easy as pip install ing a package from PyPI. You are using a revision control .sy~, aren't
you? This lesson assumes that you use git and push your repositories to Gitlab

(U) To make the feelings package available to the whole world, it should be placed at the root of a git repository, alongside a setup script
called setup.py , i.e.

feelings_repo
~ feelings/
I ~ awesome. py
I ~ _init_.py
I 1._ _main_.py
1._ setup.py

(U) The setup. py script imports from one of two packages that handle management and installation of other packages. We'll use setuptools in
this example, because it is more powerful and installed by default in virtual environments. In simple cases like this one, the built-in distutils module
is more than adequate. and functionally identical.

(U) The script calls a single function , setup , and takes metadata about the package, including the name and version number of the package, the
name and email of the developer responsible for the package, and a list of packages (or modules). It looks like this:

from setuptools import setup

setup(name="pyTest", I P . L .
version='0.0.1", ~------.............. -
description="The simplest Python Pac;;kpge. :i.masiflab■l~"•, • • • • •• • .• • • • • •
author= I I . • · • · · · · • ~-----------

86 - 36

author _email=' ---------packages= ['feelings' J,
)

Doc ID: 6689693
(U) To use distutils instead of setuptools, change the first line to read from distutils. core import setup . Two powerful advantages
of setuptools over distutils are:

• Dependency management, so that external packages available in PyPI will be installed automatically, and

• Automatic creation of entry point shell scripts that hook into specified functions in your code.

(U) Sharing Packages
.

.. . . .
J P . L . 86 - 36

(U) We have bigger fish to fry-we want to get the Awesome -ness out into the world , anQ we'te almost there. Once the changes have been commited
and pushed to Gitlab, we can share them with one simple pip command. ln&ide-df a ·virtual environment, anyone with access to Gitlab can execute

$ pip instal l -e git+git@gitlab.coi.nsa.ic.gov:I f f~elings.git#egg=feelings

(U) The -e flag installs the repository as editable, a.k.a. in developer mode. This means that the full git repository is cloned inside the virtual
environment's src folder and can be modified or updated in place (e.g. using git clone) without requiring reinstallation . The #egg=feelings is
necessary for pip install to work, and must be added manually; it is neither required nor even used by Gitlab.

(U) Once your user has pip install -ed your package, that's it! She can now do awesome stuff, like

from feelings import awesome

a = awesome . Awesome("Dostoyevsky")

print (a)

Dostoyevsky is AWESOME.

(U) Even better, it only takes little more work for her to include your package as a dependency in her packages and applications!

Doc ID: 6689693

Lesson 09: Exceptions, Profiling, and Testing
0

• -------- I (b) (3)- P . L . 86 - 36

Updated 8 months ago byl Ii~ COM·P· 3321 ·
3 539 281 . .

@i,H,i Ill

(U) Exception handling and code testing and profiling in Python.

Recommendations

UNCLASSIFIED

(U) Introduction
(U) Attention to exception handling, profiling, and testing distinguishes professional developers writing high-quality code from amateurs that hack
around just enough to get the job done. Each topic warrants many hours of discussion on its own, but Python makes it possible to start learning and
using these principles with minimal effort. This section covers basic ideas to get you interested and see the usefulness of these ideas and modules.
Let's begin ... by making some errors.

(U) Exceptions
(U) Python is very flexible and will try its absolute best to do whatever you ask it to, but sometimes you can just confuse it way too much. The first
type of error is the syntax error. By this point in the course, we've all seen more than enough of these! They happens when Python cannot parse
what you typed.

for i in range (10)

Doc ID: 6689693

def altered_cool ():
print (awesome . Awesome('Artisanal vinegar')) # still there?
print (coolgroup('the intelligentsia'))
cool = 'hipster '
lumberjack = True
print (sorted (locals () . keys()))
print (locals ()['cool'])

altered_cool()

'lumberjack' in globals ()

globals ()[' cool']

globals () == locals ()

(U) Module namespaces

(U) Finally, each module also has its own module namespace. You can inspect them using the module's special _diet_ method.

sorted (awesome ._ dict_ . keys())

guess what?
dir (awesome) == sorted (awesome ._ dict_ . keys())

awesome ._ dict_['cool'] # can also print this to get the memory Location

didn't we just see that here?
globals ()['coolgroup']

dir (awe)

awe ._dict_['cool']

awe == awesome

id (awe) == id (awesome)

(U) Modifying module namespaces

Doc ID: 6689693
(U) You can add to module namespaces on the fly. Keep in mind, though, that this will only last until the program exits, and the actual module file
will be unchanged.

def more_awesome ():
return "They ' re awesome! "

awe .exclaim = more_awesome

awe . exclaim()

' exclaim ' in dir (awe)

' exclaim ' in dir (awesome)

(U) Packages
(U) What if you want to organize your code into multiple modules? Since a module is a file, the natural thing to do is to gather all your related
modules into a single directory or folder. And, indeed, a Python package is just that: a directory that contains modules, a special _ini t_. py file ,
and sometimes more packages or other helper files.

Doc ID: 6689693

File "<ipython-input-1-6f7914dd2e9a>" , line 1
for i in range (10)

I\

SyntaxError : invalid syntax

(U) Python could not parse what we were trying to do here (because we forgot our colon). It did, however, let us know where things stopped making
sense. Note the printed line with an tiny arrow (") pointing to where Python thinks there is an issue.

(U) The statement SyntaxError: invalid syntax is an example of a special exception called a SyntaxError. It is fairly easy to see what happened
here, and there is not much to do besides fixing your typo. Other exceptions can be much more interesting.

(U) There are many types of exceptions:

import builtins

This will display a Lot of output.
To make it scrollable, select this cell and choose
#Cell> Current Output> Toggle Scrolling
help(builtins)

Python 2 used to have this info in the · exceptions· module
Python 3 moved it into ' builtins · for consistency
So for python 2, try this instead:
import exceptions
dir(exceptions)

(U) I bet we can make some of these happen. In fact, you probably already have recently.

1/0

def f () :

1/0

f()

1/ ' 0 '

import chris

file = open ('data' , 'w')

file . read()

Doc ID: 6689693

(U) Exception Handling
(U) When exceptions might occur, the best course of action to is to handle them and do something more useful than exit and print something to the
screen . In fact , sometimes exceptions can be very useful tools (e.g. Keyboardinterrupt). In Python, we handle exeptions with
the try and except commands.

(U) Here is how it works:

1. (U) Everything between the try and except commands is executed .
2. (U) If that produces no exception, the except block is skipped and the program continues.
3. (U) If an exception occurs, the rest of the try block is skipped.
4. (U) If the type of exception is named after the except keyword , the code after the except command is executed.
5. (U) Otherwise, the execution stops and you have an unhandled exception .

(U) Everything makes more sense with an example:

def f (x) :

try :
print ("I am going to convert the input to an integer")
print (int (x))

except ValueError :

f(2)

f (' 2 ')

f ('two ')

print ("Sorry, I was not able to convert that . ")

(U) You can add multiple Exception types to the except command:

... except (TypeError, ValueError):

(U) The keyword as lets us grab the message from the error:

Doc ID: 6689693

def be_careful (a, b):
try :

print (float (a) / float (b))
except (ValueError , TypeError , ZeroDivisionError) as detail:

print{"Handled Exception : " , detail)
except :

print ("Unexpected error!")
finally :

print ("THIS WILL ALWAYS RUN!")

be_careful{ l , 0)

be_careful{ l ,[1, 2])

be_careful{ l , ' two')

be_careful{16**400, 1)

float {l6**400)

(U) We've also added the fin ally command. It will always be executed, regardless of whether there was an exception or not, so it should be used
as a place to clean up anything left over from the try and except clauses, e.g. closing files that might still be open.

(U) Raising Exceptions
(U) Sometimes, you will want to cause an exception and let someone else handle it. This can be done with the raise command.

raise TypeError ('Vou submitted the wrong type ')

(U) If no built-in exception is suitable for what you want to raise, defining a new type of exception is as easy as creating a new class that inherits
from the Exception type.

class MyPersonalError (Exception):
pass

raise MyPersonalError("I am mighty . Hear my roar!")

Doc ID: 6689693

def locater (mylocation):
if (mylocation<0):

raise MyPersonalError("I am mighty. Hear my roar!")
print (mylocation)

locater(-1)

(U) When catching an exception and raising a different one, both exceptions will be raised (as of Python 3.3).

class MyException (Exception) :
pass

try :
int ("abc")

except ValueError :
raise MyException("You can't convert text to an integer!")

(U) You can override this by adding the syntax from None to the end of your raise statement.

class MyException (Exception):
pass

try :
int ("abc")

except ValueError :
raise MyException("You can't convert text to an integer!") from None

(U) Testing
(U) There are two built-in modules that are pretty useful for testing your code. This also allows code to be tested each time it is imported so that a
user on another machine would notice if certain methods did not do what they were intended to ahead of time.

(U) The doctest Module
(U) The doctest module allows for testing of code and value assertions in the documentation of the code itself. It also works with exceptions; you
just copy and paste the appropriate Traceback that is expected Oust the first line and the actual exception string are needed). You may
incorporate doctest into a module or script. See the official Python documentation for details.

Doc ID: 6689693

This is the "example" module.

The example module supplies one function, factorial(). For example,

>» factorial(5)
120

def factorial (n):
"""Return the factorial of n, an exact integer>= 0.

>>> [factorial(n) for n in range(6)]
[1, 1, 2, 6, 24, 120]
>>> factorial(30)
265252859812191058636308480000000
>>> factorial(-1)
Traceback (most recent call last):

ValueError : n must be>= 0

Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last) :

ValueError: n must be exact integer
>>> factorial(30.0)
265252859812191058636308480000000

It must also not be ridiculously large:
>>> factorial(le100)
Traceback (most recent call last):

OverflowError: n too large

import math
if not n >= 0:

raise ValueError ("n must be>= 0")
if math . floor(n) != n:

Doc ID: 6689693
raise ValueError ("n must be exact i nteger")

if n+l == n: # catch a value Like 1e388
raise OverflowError ("n too l arge ")

result = 1
factor = 2
while factor <= n:

result *= factor
factor += 1

return result

if _name_ -- _ mai n_" ·
import doctest
doctest . testmod()

(U) This lesson can be tricky to understand from the notebook. It will make the most sense if you copy and paste the above code into a file
named factorial. py , then from the terminal run:

python factorial.py -v

Note that you don't have to include the doctest lines in your code. If you remove them, the following should work:

python -m doctest -v factorial.py

(U) The uni ttest Module
(U) The unittest module is much more stuctured, allowing for the developer to create a class of tests that are run and analyzed flexibly. To create a
unit test for a module or script:

• import uni ttest ,
• create a test class as a subclass of the uni ttest. Testcase type,

• add tests as methods of this class, making sure that the name of each test function begins with the word 'test', and

• add unittest.main() to your main loop to run the tests.

Doc ID: 6689693

import unittest
•.• other imports, script code, etc
class FactorialTests (unittest . TestCase):

def testSingleValue (self):
self . assertEqual(factorial(S), 120)

def testMultipleValues (self) :
' self . assertRaises(TypeError , factorial, [1, 2, 3, 4])

def testBoolean (self):
self . assertTrue(factorial(S) 120)

def main ():
""" Main function for this script"""
unittest . main() # Check the documentation for more verbosity levels, etc.
.•• rest of main function

if _ name_ -- "_main_" ·
main()

import unittest
dir(unittest .TestCase)

(U) Profiling
(U) There are many profiling modules, but we will demonstrate the cProfile module from the standard library. To use it interactively, first import the
module, then call it with a single argument, which must be a string that could be executed if it was typed into the interpreter. Frequently, this will be a
previously-defined function.

import cProfile

Doc ID: 6689693

def long (upper_limit=100000):
for x in r ange (upper_limit):

pass

def short ():
pass

def outer (upper_limit=100000):
short()
short()
long ()

cProfile . run('outer()')

cProfile . run('outer(10000000)')

(U) The output shows

ncalls: the number of calls,
tottime: the total time spent in the given function (and excluding time made in calls to sub-functions),
percall: the quotient of tottime divided by ncalls
cumtime: the total time spent in this and all subfunctions (from invocation till exit). This figure is accurate even for recu
rsive functions.
percall: the quotient of cumtime divided by primitive calls
filename:lineno(function): provides the respective data of each function

(U) The quick and easy way to profile a whole application is just to call the cProfile main function with your script as an additional argument:

$ python -m cProfile myscript.py

(U) Another useful built-in profiler is timeit. It's well suited for quick answers to questions like "Which is better between A and B?"

$ python -m timeit "'for i in range(100): ' ' str(i)'

import timeit

timeit . timeit (' "-".join(str(n) for n in range(100))' ,number=20000)

Doc ID: 6689693

mySetup = '' '
def myfunc(upper_limit=100000) :

return range(upper_limit)

timeit . timeit(' myfunc() ' ,number=1000 ,setup=my5etup)

Exercise 1: Write a custom error and raise it if RangeQuery is created with dates not in the correct format.

Exercise 2: Given the list of tuples: [("2016-12-01 ", "2016-12-06"),("2015-12-01 ", "2015-12-06"),("2016-2-01 ", "2016-2-06"),("01/03/2014",
"02/03/2014"), ("2016-06-01", "2016-10-06")] write a loop to print a rangeQuery for each of the date ranges using "T6#61HAEL TO USA, Pv1EV 11 ,

"Primary IP address of Zendian diplomat", "10.254.18.162" as your classification, justification and selector.

Inside the loop, write a try/except block to catch your custom error for incorrectly formated dates.

UNCLASSIFIED

Doc ID: 6689693

Lesson 10: Iterators, Generators and Duck
Typing .. J

0 • • • • • • • •••. ------··
Updated 9 months ago byl I in COMP 3321

3 556 273

...

III IMi:M,i

(U) Iterators, generators, sorting, and duck typing in Python.

I

Recommendations

UNCLASSIFIED

(U) Introduction: List Comprehensions Revisited
(U) We begin by reviewing the fundamentals of lists and list comprehension.

melist = [i for i in range (l , 100, 2)]
for i in melist: # how does the Loop work?

print (i)

(U) What happens when the list construction gets more complicated?

noprimes = [j for i in range (2, 19) for j in range (i*2, 500, i)]

primes = [x for x in range (2, 500) if x not in noprimes]

print (sorted (primes))

(U) Can we do this in one shot? Yes, but...

(b) (3)-P . L . 86 - 36 1

Doc ID: 6689693

nesting madness
primes = [x for x in range (2, 500) if x not in [j for i in range (2, 19) for j in range(i*2 , 500, i)]]

(U) Iterators
(U) To create your own iterable objects, suitable for use in for loops and list comprehensions, all you need to do is implement the right special
methods for the class. The _i ter _ method should return the iterable object itself (almost always self), and the _next_ method defines the
values of the iterator.

(U) Let's do an example, sticking with the theme previously introduced, of an iterator that returns numbers in order, except for multiples of the
arguments used at construction time. We'll make sure that it terminates eventually by raising the Stopiteration exception whenever it gets
to 200 . {This is a great example of an exception in Python that is not uncommon: handling an event that is not unexpected, but requires
termination; for loops and list comprehensions expect to get the Stopiteration exception as a signal to stop processing.)

class Nonfactorlterable (object):
def _init_(self, *args):

self . avoid_multiples = args
self . x = 0

def _next_(self) :
self . x += 1
while True :

if self . x > 200 :
raise Stoplteration

for y in self . avoid_multiples:
if self . x % y -- 0:

self . x += 1
break

else :
return self . x

def _iter_(self):
return self

silent_fizz_buzz = NonFactoriterable(3, 5)

[x for x in silent_fizz_buzz]

mostly_prime = NonFactoriterable(2, 3, 5, 7, 11, 13 , 17, 19)

partial_sum = 0

Doc ID: 6689693

for x in mostly_prime:
partial_sum += x

partial_sum

mostly_prime = NonFactoriterable(2, 3, 5, 7, 11 , 13 , 17, 19)
print (sum(mostly_prime))

(U) It may seem strange that the _iter _ method doesn't appear to do anything. This is because in some cases the iterator for an object should
not be the same as the object itself. Covering such usage is beyond the scope of the course.

(U) There is another way of implementing a custom iterator: the _get item_ method. This allows you to use the square bracket [J notation for
getting data out of the object. However, you still must remember to raise a Stopiteration exception for it to work properly in for loops and list
comprehensions.

Another iterator example
In the below example, we create an iterator that returns the squares of numbers. Note that in the next method, all we're doing is iterating our
counter (self. x) and returning the square of that counter number, as long as the counter is not greater than the pre-defined limit (self.limit).
The while loop in the previous example was specific to that use-case; we don't actually need to implement any looping at all in _next_ , as
that's simply the method called for each iteration through a loop on our iterator.

Here we're also implementing the _getitem_ method, which allows us to retrieve a value from the iterator at a certain index location . This one
simply calls the iterator using self._next_ until it arrives at the desired index location, then returns that value.

Doc ID: 6689693

class Squares (object):

def _init_(self , limit=200):
self . limit = limit
self .x = 0

def _next_(self):
self .x += 1
if self . x > self . limit:

raise Stoplteration
return (self . x-1)**2

def __getitem_(self , idx):
initialize counter toe
self . x = 0
if not isinstance (idx, int):

raise Exception ("Only integer index arguments are accepted!")
while self . x < idx:

self ._next_()
return self .x**2

def _iter_(self):
return self

my_squares = Squares(limit=20)

[x for x in my_squares]

my_squares[5]

since we set a Limit of 20, we can't access an index Location higher than that
my_squares[25]

(U) Benefits of Custom Iterators
1. (U) Cleaner code
2. (U) Ability to work with infinite sequences
3. (U) Ability to use built-in functions like sum that work with iterables
4. (U) Possibility of saving memory (e.g. range)

Doc ID: 6689693

(U) Generators
(U) Generators are iterators with a much lighter syntax. Very simple generators look just like list comprehensions, except they're surrounded with
parentheses () instead of square brackets [] . More complicated generators are defined like functions, with the one difference being that they
use the yield keyword instead of the return keyword. A generator maintains state in between times when it is called; execution resumes starting
immediately after the yield statement and continues until the next yield is encountered.

y = (x*x for x in range (30))
print (y) # hmm •• •

def xsquared () :
for i in range (30) :

yield i *i

def xsquared_inf ():
X = 0

while True :
yield x*x
X += 1

squares = [x for x in xsquared()]
print (squares)

(U) Another example .. . days of the week!

def day_of_week () :
i = 0

days = ["Monday" , "Tuesday" , "Wednesday" , "Thursday" , "Friday" , "Saturday" , "Sunday"]
while True :

yield days[i%7]
i += 1

day_of _week()

import random
def snowday (prob=.01) :

r = random . random()
if r < prob:

return "snowday!"
else :

return "regular day."

Doc ID: 6689693

n = 0

for x in day_of_week() :
today = snowday()
print (x + " i s a " + today)
n += 1
if today == "snowday!" :

break

weekday = (day for day in day_of_week())

next (weekday)

(U) Pipelining
(U) One powerful use of generators is to connect them together into a pipeline, where each generator is used by the next. Since Python evaluates
generators "lazily," i.e . as needed, this can increase the speed and potentially allow steps to run concurrently. This is especially useful if one or two
steps can take a long time (e.g. a database query). Without generators, the long-running steps will become a bottleneck for execution, but
generators allow other steps to proceed while waiting for the long-running steps to finish.

import random

Get the fractional part of a string representation of a float
def frac_part (v):

v = str (v)
i , f = v. split(' . ')
return f

traditional approach
results = []
for i in range (20) :

r = random . random() *100
r_str = str (r)
r_frac = frac_part(r_str)
r_out = float ('0 .' + r_frac)
results . append(r_out)

results

generate a random number
convert it to a string
get the fractional part
convert it back to a float

Doc ID: 6689693

generator pipeline
rand_gen = (random . random() * 100 for i in range (20))
str_gen = (str (r) for r in rand_gen)
frac_gen = (frac_part(r) for r in str_gen)
out_gen = (float ('0. ' +r) for r in frac_gen)

results = list (out_gen)
results

(U) Sorting
(U) In Python 2, anything iterable can be sorted, and Python will happily sort it for you, even if the data is of mixed types--by default, it uses the
built-in cmp function, which almost always does something (except with complex numbers). However, the results may not be what you expect!

(U) In Python 3, iterable objects must have the _lt_ (lt = less than) function explicitly defined in order to be sortable.

(U) The built-in function sorted(x) returns a new list with the data from x in sorted order. The sort method (for list s only) sorts a list in-place
and returns None .

int_data = [10, 1, 5, 4, 2]

sorted (int_data)

int_data

int_data . sort()

int_data

(U) To specify how the sorting takes place, both sorted and sort take an optional argument called key . key specifies a function of one
argument that is used to extract a comparison key from each list element (e.g. key=str.lower). The default value is None (compare the elements
directly).

users = ['hAckerl' , 'TheBoss' , 'botman' , 'turingTest']

sorted (users)

sorted (users, key=str . lower)

(U) The _lt_ function takes two arguments: self and another object, normally of the same type.

Doc ID: 6689693

class comparableCmp (complex):
def _lt_(self , other):

return abs (self) < abs (other)

a = 3+4j

b 5+12j

a < b

al = comparableCmp(a)

bl = comparableCmp(b)

al < bl

c = [bl, al]

sorted (c)

(U) Here's how it works:

1. the argument Qiven to key must be a function that takes a single argument;
2. internally, sorted creates function calls key(item) on each item in the list and then
3. sorts the original list by using _lt_ on the results of the key(item) function.

(U) Another way to do the comparison is to use key :

def magnitude_key (a):
return (a*a . conjugate()) . real

magnitude_key{3+4j)

sorted {[5+3j , lj , -2j , 35+0j], key=magnitude_key)

(U) In many cases, we must sort a list of dictionaries, lists, or even objects. We could define our own key function or even several key functions for
rliff P.rP.nt !'.nrtinn mP.thnrl!'.:

list_to_sort = [{ 'lname' : 'Jones' , 'fname' : 'Sally' }, { 'lname' : 'Jones' , 'fname' : 'Jerry' }, { 'lname' : 'Smith' , 'fname' : 'John' }, { 'lr

def lname_sorter (list_item):
return list_item['lname']

►

Doc ID: 6689693

def fname_sorter (list_item):
return list_item['fname']

def lname_then_fname_sorter (list_item):
return (list_item['lname'], list_item['fname'])

sorted(list_to_sort, key=lname_sorter)

sorted (list_to_sort, key=fname_sorter)

sorted (list_to_sort, key=lname_then_fname_sorter)

(U) While it's good to know how this works, this pattern common enough that there is a method in the standard library operator package to do it
even more concisely.

import operator

lname_sorter = operator . itemgetter('lname') # same as previous Lname_sorter

(U) The application of the itemgetter method returns a function that is eqivalent to the lname_sorter function above. Even better, when passed
multiple arguments, it returns a tuple containing those items in the given order. Moreover, we don't even need to give it a name first, it's fine to do
this:

sorted (list_to_sort, key=operator . itemgetter('lname'))

sorted (list_to_sort, key=operator . itemgetter('lname' , 'fname')) # same as using Lname_thenJname_sorter

(U) To use operator. i temgetter with list s or tuple s, give it integer indices as arguments. The equivalent function for objects
is operator. attrgetter .

(U) Since we know so much about Python now, it's not hard to figure out how simple operator. i temgetter actually is; the following function is
essentially equivalent:

def itemgetter_clone (*args):
def f (item) :

return tuple (item[x] for x in args)
return f

(U) Obviously, operator. i temgetter and i temgetter _clone are not actually simple- it's just that most of the complexity is hidden inside the
Python internals and arises out of the fundamental data model.

(U) Duck Typing

Doc ID: 6689693
(U) All the magic methods we've discussed are examples of the fundamental Python principle of duck typing: "If it walks like a duck and quacks
like a duck, it must be a duck." Even though Python has is instance and type methods, it's considered poor form to use them to validate input
inside a function or method. If verification needs to take place, it should be restricted to verifying required behavior using hasattr . The benefit of
this approach can be seen in the built-in sum function .

help(sum)

(U) Any sequence of numbers, regardless of whether it's a list , tuple , set , generator, or custom iterable, can be passed to sum .

(U) The following is a comparison of bad and good examples of how to write a product function :

def list_prod (to_multiply):
if lsinstance(to_multipl y, list): # don't do this!

accumulator = 1
for i in to_multiply:

accumulator *= i
return accumulator

else :
raise TypeError ("Argument to_multiply must be a list")

def generic_prod (to_multiply):
if hasattr (to_multiply, '_iter_') or hasattr (to_multiply, '_getitem_'):

accumulator = 1
for i in to_multiply:

accumulator *= i
return accumulator

else :
raise TypeError ("Argument to_multiply must be a sequence")

l i st_prod([l , 2, 3])

list_prod((l , 2, 3))

generic_prod((l , 2, 3))

(U) Having given that example, testing for iterability is one of a few special cases where isinstance might be the right function to use, but not in
the obvious way. The collections package provides abstract base classes which have the express purpose of helping to determine when an
object implements a common interface.

(U) Finally, effective use of duck typing goes hand in hand with robust error handling, based on the principle that "it's easier to ask for forgiveness
than permission ."

Doc ID: 6689693

Exercises
1. Add a method to your 'RangedQuery' class to allow instances of the class to be sorted by 'start_date'.
2. Write an iterator class 'Reverselter' that takes a list and iterates it from the reverse direction.
3. Write a generator wh ich will iterate over every day in a year. For example, the first output would be 'Monday, January 1 '.
4. Modify the generator from exercise 2 so the user can specify the year and initial day of the week.

UNCLASSIFIED

Doc ID: 6689693

Pipelining with Generators
. 0

Created over 3 years as90 by_l ____ r ...
,,Python3 thumbnail 13 20

ID Im iM,i@\Mtl IM-1¥1

.
.

(U) Defining processing pipelines with generators in Python. It's simply awesome.

Recommendations

Pipelining with Generators

(b) (3)-P.L. 86-36

Imagine you're doing your laundry. Think about the stages involved. Roughly speaking, the stages are sorting, washing, drying, and folding . The
beauty though is that even though these stages are sequential, they can be performed in parallel. This is called pipelining.

Python generators make pipelining easy and can even clarify your code quite a bit. By breaking your processing into distinct stages, the Python
interpreter can make better use of your computer's resources, and even break the stages out into separate threads behind the scenes. Memory is
also conserved because values are automatically generated as needed, and discarded as soon as possible.

A prime example of this is processing results from a database query. Often , before we can use the results of a database query, we need to clean
them up by running them through a series of changes or transformations. Pipelined generators are perfect for this .

from pprint import pprint
import random

A Silly Example
Here we're going to take 200 randomly generated numbers and extract their fractional parts (the part after the decimal point). There are probably
more efficient ways to do this, but we're doing to do it by splitting out the string into two parts. Here we have a function that simply returns the
integer part and the fractional part of an input float as two strings in a tuple.

Doc ID: 6689693

def split_float (v) :

Takes a float or string of a float
and returns a tuple containing the
i nteger part and the fractional part
of the number, as strings, respectively .

v = str (v)
i, f = v . split('.')
return (i, ' 0 . ' +f)

The Pipeline
Here we have a pipeline of four generators, each feeding the one below it. We pprint out the final resulting list after all the stages have complete.
See the comments after each line for further explanation.

rand_gen = (random . random() * 100 for i in range (200)) # generate 200 random floats between e and 100, one at a time
results = (split_float(r) for r in rand_gen) # call our splitJloat() function which will generate the correspoding tuples
results = (r[l] for r in results) # we only care about the fractional part, so only keep that part of the tuple
results (float (r) for r in results) # convert our fractional value from a string back into a float

pprint(list (results)) # print the final results

Why not a for-loop?
We could have put all the steps of our pipeline into a single for-loop, but we get a couple advantages by breaking the stages out into separate
generators:

• There's some clarity gained by having distinct stages specified as a pipeline. People reading the code can clearly see the transforms.

• In a for-loop, Python simply computes the values sequentially; there's no chance for automatic optimization or multi-threading. By breaking
the stages out, each stage can execute in parallel , just like your washer and dryer.

Another (Pseudo-)Example
Here's a pseudo-example querying a database that returns JSON that we need to convert to lists.

Doc ID: 6689693

import json
results= (json.loads(result) for result in db_cursor.execute(my_query))
results= (r['results'J for r in results)
results= ([r['name'J, r['type'], r['count'], r['source']] for r in results)

Filters
We can even filter our data in our generator pipeline.

results= (r for r in results if r[2] > 0) # remove results with a count of zero
foo(results) # do something else with your results

Doc ID: 6689693

Lesson 11: String Formatting
0

(b) (3)-P . L. 86-36

.... --------­.
Updated 9 months ago by ... , --------t'I in COMP 3321

3 1 547 251

fflirMii Ill
(U) Lesson 11: String Formatting

Recommendations

UNCLASSIFIED

(U) Intro to String Formatting
(U) String formatting is a very powerful way to display information to your users and yourself. We have used it through many of our examples, such
as this:

'This is a formatted String{}' .format ("--->hi I'm a formatted String argument<---")

(U) This is probably the easiest example to demonstrate. The empty curly brackets {} take the argument passed into format .

(U) Here's a more complicated example:

'{2} {1} and {0}' . format ('Henry' , 'Bill' , 'Bob')

(U) Arguments can be positional , as illustrated above, or named like the example below. Order does matter, but names can help.

'{who} is really {what}!' . format (who='Tony' , what='awesome')

(U) You can also format lists:

Doc ID: 6689693

cities = ['Dallas' , 'Baltimore' , 'DC' , 'Austin' , 'New York']

' {0[4]} is a really big city. ' . format (cities)

(U) And dictionaries:

lower_to_upper = { ' a ' : 'A ' , ' b ' : 'B' , ' c ' : 'C' }

"This is a big letter {0[a]}" .format (lower_to_upper) # notice no quotes around a

"This is a big letter {lookup[a]}" . format (lookup=lower_to_upper) # can be named

for little, big in lower_to_upper . items():
print ('[-->{0:10} -- {l:10}<--]' . format (little, big))

(U) If you actually want to include curly brackets in your printed statement, use double brackets like this: { { } } .

"{{0}} {0}" . format ('Where do I get printed?')

(U) You can also store the format string in a variable ahead of time and use it later:

the_way_i_want_it = '{0:>6} = {0:>#16b} = {0:#06x}'

for i in 1, 25 , 458 , 7890 :
print (the_way_i_want_it . format (i))

(U) Format Field Names
(U) Here are some examples of field names you can use in curly brackets within a format string.

{<field name>}

• (U) 1 : the second positional argument

• (U) name : keyword argument

• (U) O.var : attribute named var of the first positional argument

• (U) 3[0] : element O of the fourth positional argument

• (U) me_data[key) : element associated with the specific key string 'key' of me_data

(U) Format Specification

Doc ID: 6689693
(U) When using a format specification, it follows the field name within the curly brackets, and its elements must be in a certain order. This is only for
reference; for a full description, see the Python documentation on string formatting .

{<field name>:<format spec>}

1. (U) Padding and Alignment

• > : align right

• < : align left

• = : only for numeric types

• " : center

1. (U) Sign

• - : prefix negative numbers with a minus sign

• + : like - but also prefix positive numbers with a +

• ' ' : like - but also prefix positive numbers with a space

1. (U) Base Indicator (precede with a hash # like above)

• 0b : binary

• 00 : octal

• ex : hexadecimal

1. (U) Digit Separator

• , : use a comma to separate thousands

1. (U) Field Width

• leading 0 : pad with zeroes at the front

1. (U) Field Type (letter telling which type of value should be formatted)

• s : string (the default)

• b : binary

• d : decimal: base 10

• o : octal

• x : hex uses lower case letters

• x : hex uses upper case

• n : like d , use locale settings to determine decimal point and thousands seperator

• no code integer : like d

• e : exponential with small e

• E : exponential with big E

• f : fixed point, nan for not a number and inf for infinity

• F : same as f but uppercase NAN and INF

Doc ID: 6689693
• g : general format

• G : like G but uppercase

• n : locale settings like g

• % : times 100, displays as f with a %

• no code decimal : like g , precision of twelve and always one spot after decimal point

1. (U) Variable Width

(U) New in Python 3.6: f-strings
Add 'f' before the string to create an f-string
Expression added directly inside the ' {} ' brackets rather than after the format statement
X = 34

y = 2

f "34 * 2 = {x*y}"

my_name = 'Bob'
f "My name is {my_name}"

(U) Examples
'{0:{l}.{2}f}' . format (9876.5432 , 18, 3)

'{0:010.4f}' . format {-123.456)

'{0:+010.4f}' .format (-123.456)

for i in range {l , 6) :
print ('{0:10.{l}f}' . format {l23 .456 , i))

v = { 'value' :876.543, 'width' :15 , 'precision' : 5}

"{0[value]:{0[width]}.{0[precision]}}" .format (v)

data = [{ 'Steve' , 59 , 202), { 'Samantha' , 49 , 156), ('Dave' , 61 , 135)]

for name , age, weight in data :
print ('{0:<12s} {1:4d} {2:4d}' . format (name, age, weight))

Doc ID: 6689693

same as above but with f - strings

data = [('Steve' , 59, 202), ('Samantha' , 49 , 156), ('Dave' , 61 , 135)]

for name, age, weight in data:
print (f '{name:<12s} {age:4d} {weight:4d}')

UNCLASSIFIED

Doc ID: 6689693

COMP3321 Day01 Homework - Grocerylist
0 ------

__ ____,. ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ •• • • ■ •• ■ ••• ■ •••••••••••• ■ • ■ ■ •• I (b) (3) - P . L . 86-36 I
Updated almost 3 years ago byl I in COMP 3321

3 233 36 - -

(U) Homework for Day01 of COMP3321 . Task is to sort items into bins.

Recommendations

(U) COMP3321 Day01 Homework

Grocerylist

Doc ID: 6689693

myGrocerylist ["apples" , "bananas" , "milk" , "eggs" , "bread" ,
"hamburgers" , "hotdogs" , "ketchup" , "grapes" ,
"tilapia" , "sweet potatoes" , "cereal" ,
"paper plates" , "napkins" , "cookies" ,
"ice cream" , "cherries" , "shampoo"]

Items by category
vegetables = ["sweet potatoes" , "carrots" , "broccoli" , "spinach" ,

"onions" , "mushrooms" , "peppers"]
fruit = ["bananas" , "apples" , "grapes" , "plumbs" , "cherries" , "pineapple"]
cold_items = ["eggs" , "milk" , "orange juice" , "cheese" , "ice cream"]
proteins = ["turkey" , "tilapia" , "hamburgers" , "hotdogs" , "pork chops" , "ham" , "meatballs"]
boxed_items = ["pasta" , "cereal" , "oatmeal" , "cookies" , "ketchup" , "bread"]
paper_products ["toilet paper" , "paper plates" , "napkins" , "paper towels"]
toiletry_items = ["toothbrush" , "toothpaste" , "deodorant" , "shampoo" , "soap"]

My items by category
my_vegetables = []
my_fruit = []
my_cold_items = []
my_proteins = []
my_boxed_items = []
my_paper_products []
my_toiletry_items = []

(U) Fill in your code below. Sort the items in myGroceryList by type into appropriate my_category lists using looping and decision making

print ("My vegetable list: " , my_vegetables)
print ("My fruit list: " , my_fruit)
print ("My cold item list: " , my_cold_items)
print ("My protein list: " , my_proteins)
print ("My boxed item list: " , my_boxed_items)
print ("My paper product list: " , my_paper_products)
print ("My toiletry item list: " , my_toiletry_items)

Doc ID: 6689694

(U)

Dictionary and File Exercises
0

Updated over 2 y: ars ago by-, _____ ..,., in C00MP 3321
3 317 33

Ill 1%MitJI I dlrH,N · ·

(U) Dictionary and file exercises for COMP3321 .

Recommendations

Lists and Dictionary Exercises

Exercise 1 (Euler's multiples of 3 and 5 problem)
If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.

multiples_3 = [i for i in range (3, 1000, 3)]
multiples_5 = [i for i in range (S, 1000, 5)]
multiples = set ((multiples_3 + multiples_5)) # set will remove duplicate numbers
sum(multiples) # add all the numbers together

you can also do this in one line:

sum([i for i in range (3, 1000) if i % 3 == 0 or i % 5 == 0])

Exercise 2

(b) (3)-P . L . 86 - 36

Write a function that takes a list as a parameter and returns a second list composed of any objects that appear more than once in the original list

Approved for Release by NSA on 12-02-2019, FOIA Case# 108165

Doc ID: 6689694
• duplicates([1,2,3,6,7,3,4,5,6]) should return [3,6]

• what should duplicates(['cow','pig','goat','horse','pig']) return?

you can use a dictionary to keep track of the number of times seen
def duplicates (x):

dup={}
for i in x:

dup[i] = dup . get(i, 0)+1
result = []
for i in dup . keys():

if dup[i] > 1 :
result . append(i)

return result

X = (1, 2, 3, 6, 7, 3, 4, 5, 6)
duplicates(x)

#you can also just use Lists ...
def duplicates2 (x):

dup = []
for i in x:

if x. count(i) > 1 and i not in dup:
dup . append(i)

return dup

y = ('cow' , 'pig' , 'goat' , 'horse' , 'pig']
duplicates2(y)

z = ('2016' , '2015' , '2014')
duplicates(z)

Exercise 3
Write a function that takes a portion mark as input and returns the full classification

• convert_classification('U//FOUO') should return 'UNCLASSIFIED//FOR OFICIAL USE ONLY'

• convert_classification('S//REL TO USA, FVEY') should return 'SECRET//REL TO USA, FVEY'

Doc ID: 6689694

just create a "lookup table" for potenial portion marks
full_classifications { 'U//FOUO' : 'UNCLASSIFIED//FOR OFFICIAL USE ONLY' ,

'C//REL TO USA, FVEY' : 'CONFIDENTIAL//REL TO USA, FVEY' ,
'S//REL TO USA, FVEY' : 'SECRET//REL TO USA, FVEY' ,
' S//SI//REL TO USA, FVEY' : 'SECRET//SI//REL TO USA, FVEY ' ,
' TS//REL TO USA, FVEY' : 'TOP SECRET//REL TO USA, FVEY' ,
'TS//SI//REL TO USA, FVEY' : 'TOP SECRET//SI//REL TO USA, FVEY' }

def convert_classification (x):
return full_classifications . get(x, 'UNKNOWN') #lookup the value for the portion mark

convert_classification('U//FOUO')

convert_classification('S//REL TO USA, FVEY')

convert_classification('C//SI')

File Input/Output Exercises
These exercises build on concepts in Lesson 3 (Flow Control, e.g., for loops) and Lesson 4 (Container Data Type, e.g, dictionaries). You will use all

· these concepts together with reading and writing from files

First, Get the Data
Copy the sonnet from htt12s://urn.nsa .ic.gov/t/tx6gm and paste it into a new text file named sonnet.txt.

Exercise 1
Write a function called file_capitalize() that takes an input file name and an output file name, then writes each word from the input file with only the
first letter capitalized to the output file. Remove all punctuation except apostrophe.

file_capitalize('sonnet.txt', 'sonnet_caps.txt') => capitalized words written to sonnet_caps.txt

Doc ID: 6689694

use help('') to see what each of these string methods are doing
d~f capitalize (sentence):

words = sentence . split() # use split to split the string by spaces (i.e., words)
new_words = [word . strip() . capitalize() for word in words] # captialize each word
return ' ' . join(new_words) # create and return one string by combing words with ' '

def remove_punct (sentence):
since replace() method returns a new string, you can chain calls to the replace()
method in order to remove all punctuation in one Line of code
return sentence . replace('.' , '') . replace(',' , '') . replace(':' , '') . replace(';' , '')

def file_capitalize (infile_name, outfile_name):
infile = open (infile_name, 'r') # open the input file
outfile = open (outfile_name, 'w') # open the outpu file

for line in infile: # Loop through each Line of input
outfile .write(capitalize(remove_punct(line)) + '\n') # write the capitalized version to the output file

infile . close() # finally, close the files
outfile . close()

file_capitalize('sonnet.txt' , 'sonnet_caps.txt')

Exercise 2
Make a function called file_word_count() that takes a file name and returns a dictionary containing the counts for each word. Remove all
punctuation except apostrophe. Lowercase all words.

file_word_count('sonnet.txt') => { 'it': 4, 'me' : 1, ... }

Doc ID: 6689694

def file_word_count (infile_name):
word_counts = {}

with open (infile_name, 'r') as infile: # using 'with' so we don't have to close the file
for line in infile : # Loop over each Line in the file

words = remove_punct(line) # we can use the remove_punct from exercise above
words = words . split() # split the Line into words

for word in words : # Loop over each word
word = word . strip() . lower()

add one to the current count for the word (start at 0 if not there)
word_counts[word] = word_counts .get(word, 0) + 1

return word_counts # return the whole dictionary of word counts

counts = file_word_count('sonnet.txt')
counts

Extra Credit
Write the counts dictionary to a file , one key:value per line.

def write_counts (outfile_name, counts):
with open (outfile_name, ' w' , encoding=' utf-8') as outfile :

to Loop over a dictionary, use the items() method
items() wiLL return a 2-eLement tuple containing a key and a value
below we puLL out the values from the tuple into their own variables, word and count
for word, count in counts . items() :

outfile . write(word + ': ' + str (count) + '\n') # write out in key:vaLue format

write_counts('sonnet_counts.txt' , counts) # use the counts dictionary from Exercise 2 above

Doc ID: 6689694

(U)

Structured Data and Dates Exercise
0

.
Updated over 3 years ago by .. , ----, in COMP 3321

3 164 13

h+l::l+FfJI tMffih11il ml Ill rm Ill , ·
(U) COMP3321 exercise for working with structured data and dates.

Recommendations

Structured Data and Dates Exercise
Save the Apple stock data from httRs://urn.nsa.ic.gov/t/Ogrli to aapl.csv.

(b) (3)-P . L. 8 6- 3 6

Use DictReader to read the records. Take the daily stock data and compute the average adjusted close ("Adj Close") per week. Hint: Use
.isocalendar() for your datetime object to get the week number.

For each week, print the year, month, and average adjusted close to two decimal places.

Year 2015 , Week 23, Average Close 107 .40
Year 2015, Week 22, Average Close 105.10

Doc ID: 6689694

from csv import DictReader
from datetime import datetime

def average (numbers):
if len (numbers) -- 0 :

return 0.0

return sum(numbers) / float (len (numbers))

def get_year_week (record):
dt = datetime . strptime(record['Date'], ' %Y -%m- %d')
return (dt . year, dt . isocalendar()[l])

def get_averages (data):
avgs = {}

for year_week, closes in data . items():
avgs[year_week] average(closes)

return avgs

def weekly_summary (reader):
weekly_data = {}

for record in reader:
year_week = get_year_week(record)

if year_week not in weekly_data:
weekly_data[year_week] = []

weekly_data[year_week] . append(float (record['Adj Close']))

return get_averages(weekly_data)

def file_weekly_summary (infile_name):
with open (infile_name, 'r') as infile:

return weekly_summary(DictReader(infile))

def print_weekly_summary (weekly_data):
for year_week in reversed (sorted (weekly_data . keys())):

Doc ID: 6689694
year = year_week[0]
week = year_week[l]
avg = weekly_data[year_week]
print ('Year {year}, Week {week}, Average Close {avg:.2f}' .format (year=year, week=week, avg=avg))

data = file_weekly_summary('aapl.csv')
print_weekly_summary(data)

Extra
Use csv.DictWriter to write this weekly data out to a new CSV file.

from csv import DictWriter

def write_weekly_summary (weekly_data, outfile_name):
headers = ['Year ' , 'Week' , 'Avg']

with open (outfile_name, ' w' , newline='') as outfile:
writer = DictWriter(outfile, headers)
writer . writeheader()

for year_week in reversed (sorted (weekly_data . keys())):
rec = { 'Year' : year_week[0], 'Week' : year_week[l], 'Avg' : weekly_data[year_week] }
writer .writerow(rec)

data = file_weekly_summary('aapl.csv')
write_weekly_summary(data, 'aapl_summary.csv')

Extra Extra
Use json.dumps() to write a JSON entry for each week on a new line.

import json

def write_json_weekly_summary (weekly_data, outfile_name):
with open (outfile_name, 'w') as outfile:

for year_week in reversed (sorted (weekly_data . keys())):
rec = { 'year' : year_week[0), ' week' : year_week[l], 'avg' : weekly_data[year_week] }
outfile .write(json . dumps(rec) + '\n')

Doc ID: 6689694

data = file_weekly_summary('aapl.csv')
write_json_weekly_summary(data, 'aapl.json')

Doc ID: 6689694

(U)

Datetime Exercise Solutions
0

Created almost 3 years ago by-I----, in CO.MP 3;32.1
3 1 143 17

li-1111-FifJI · ,

(U) Solutions for the Datetime exercises

(U) Datetime Exercises
(U) How long before Christmas?

import datetime , time

Recommendations

print (datetime . date(2017, 12, 25) - datetime . date . today())

(U) Or, if you're counting the microseconds:

print (datetime . datetime(2017 , 12 , 25) - datetime .datetime . today())

(U) How many seconds since you were born?

birthdate = datetime . datetime(1985 , 1, 31)
time_since_birth = datetime . datetime . today() - birthdate
print ('{:,}' . format (time_since_birth .total_seconds()))

.

(U) What is the average number of days between Easter and Christmas for the years 2000 - 2999?

(b) (3)- P . L . 86 - 36

Doc ID: 6689694

from dateutil.easter import easter
total = 0
span = range (2000, 3000)
for year in span :

total += (datetime . date(year, 12 , 25) - easter(year)) .days

average = total / len (ipan)
print ('{:6.4f}' . format (average))

(U) What day of the week does Christmas fall on this year?

datetime . date(2015 , 12, 25) . strftime(' %A')

(U) You get a intercepted email with a POSIX timestamp of 1435074325. The email is from the leader of a Zendian extremist group and says that
there will be an attack on the Zendian capitol in 14 hours. In Zendian local time, when will the attack occur? (Assume Zendia is in the same time
zone as Kabul)

import pytz
utc_tz = pytz . timezone(' Etc/UTC')
email_time_utc = datetime . datetime . fromtimestamp(1435074325 , tz=utc_tz)
attack_time_utc = email_time_utc + datetime . timedelta(hours=14)
zendia_tz = pytz . timezone('Asia/Kabul ')
attack_time_zendia = attack_time_utc . astimezone(zendia_tz)

print (email_time_utc)
print (attack_time_utc)
print (attack_time_zendia)

Doc ID: 6689694

(U)

Object Oriented Programming and Exceptions
Exercise

0
.

Created over 3 years ago by-I----, in COMP 3321
3 2 125 15

(U) COMP3321 exercise for object oriented programming and exceptions.

Recommendations

(b) (3)-P . L . 86-36

Object Oriented Programming and Exceptions Exercise
Make a class called Symbol that holds data for a stock symbol, with the following properties:

self.name
self.daily_data

It should also have the following functions:

def _init_(self, name, input_file)
def data_for_date(self, date_str)

init(self, name, input_file) should open the input file and read it with DictReader, putting each entry in self.daily_data, using the date strings as the
keys. Make sure to open the daily data file within a try/except block in case the file does not exist. If the file does not exist, set self.daily_data to an
empty dictionary.

data_for_date(self, date_str) should take a date string and return the dictionary containing that days' data. If there is no entry for that date, return an
empty dictionary.

Doc ID: 6689694

Tests
Make sure the following execute as specified in each comment. You can get the aapl.csv file from hllps://urn.nsa.jc.gQYLUQg[li. The apple.csv file
should not exist.

sl = Symbol('AAPL', 'aapl. CSV.)

print(s1.data_for_date('2015-08-10')) # should return a dictionary for that date
print(s1.data_for_date('2015-08-09')) # should return an empty dictionary

s2 = Symbol('AAPL', ' apple.csv') # should not raise an exception!
print(s2.data_for_date('2015-08-10')) # should return an empty dictionary
print(s2.data_for_date('2015-08-09')) # should return an empty dictionary

Doc ID: 6689695

Module: Collections and ltertools
0 (b) (3)-P . L . 86 - 36

. -----~
Updated almost 2 years ago byl I in COMP 3321

3 1 296 110

mm IMirH,N
(U) Module: Collections and ltertools

Recommendations

(U) Any programming language has to strike a balance between the number of basic elements it exposes, like control structures, data types, and so
forth , and the utility of each one. For example, Python could do without tuple s entirely, and could replace the diet with a list of list s or even
a single list where even-numbered indices contain keys and odd-numbered indices contain values. Often, there are situations that happen so
commonly that they warrant inclusion , but inclusion in the builtin library is not quite justified. Such is the case with
the collections and itertools modules. Many programs could be simplified with a defaultdict , and having one available with a single from
collection i mport defaultdict is much better than reinventing the wheel every time it's needed.

(U) Value Added Containers with collections
(U) Suppose we want to build an index for a poem, so that we can look up the lines where each word occurs. To do this, we plan to construct a
dictionary with the words as keys, and a list of line numbers is the value. Using a regular diet , we'd probably do something like this:

poem = '""'mary had a little lamb
it's fleece was white as snow
and everywhere that mary went
the lamb was sure to go"""

i ndex = {}

Ap proved for Release by NSA on 12-02-2019 , FOIA Case# 108165

Doc ID: 6689695

for linenum, line in enumerate (poem . split('\n')):
for word in line . split() :

if word in index:
index[word] . append(linenum)

else :
index[word] = [linenum]

(U) This code would be simpler without the inner if ... else . . . clause. That's exactly what a defaultdict is for; it takes a function (often
a type , which is called as a constructor without arguments) as its first argument, and calls that function to create a default value whenever the
program tries to access a key that isn't currently in the dictionary. (It does this by overriding the _missing_ method of diet .) In action, it looks
like this:

from collections import defaultdict

index = defaultdict(list)

for linenum, line in enumerate (poem . split('\n')) :
for word in line . split() :

index[word] . append(linenum)

(U) Although a defaultdict is almost exactly like a dictionary, there are some possible complications because it is possible to add keys to the
dictionary unintentionally, such as when testing for membership. These complications can be mitigated with the get method and the in operator.

' sheep ' in i ndex # False

1 in index . get('sheep') # Error

'sheep' in index # still False

2 in index['sheep'] # still FalseJ but ...

'sheep' in index # previous statement accidentally added 'sheep'

(U) You can do crazy things like change the default_ factory (it's just an attribute of the defaul tdict object), but it's not commonly used:

import itertools

def constant_factory (value):
return itertools . repeat(value) ._ next_

d = defaultdict(constant_factory('<missing>'))

d . update(name='John' , act i on='ran')

Doc ID: 6689695

'{0[name]} {0[action]} to {0(object]}' .format (d)

d # "object" added to d

(U) A Counter is like a defaultdict(int) with additional features. If given a list or other iterable when constructed, it will create counts of all
the unique elements it sees. It can also be constructed from a dictionary with numeric values. It has a custom implementation of update and some
specialized methods, like most_common and subtract .

from collections import Counter

word_counts = Counter(poem .split())

word_counts . most_common(3)

word_counts . update('lamb lamb lamb stew' . split())

word_counts . most_common(3)

c = Counter(a=3 , b=1)

d = Counter(a=1 , b=2)

C + d

c - d

(c - d) + d

c & d

C I d

Did you get the output you expected?

(U) An OrderedDict is a dictionary that remembers the order in which keys were originally inserted, which determines the order for its iteration.
Aside from that, it has a pop item method that can pop from either the beginning or end of the ordering.

(U) namedtuple is used to create lightweight objects that are somewhat like tuples, in that they are immutable and attributes can be accessed
with [) notation . As the name indicates, attributes are named, and can also be accessed with the • notation. It is most often used as an
optimization, when speed or memory requirements dictate that a diet or custom object isn't good enough. Construction of a namedtuple is
somewhat indirect, as namedtuple takes field specifications as strings and returns a type , which is then used to create the named tuples. named
tuples can also enhance code readability.

from collections import namedtuple

Doc ID: 6689695

Person = namedtuple('Person' , 'name age gender')

bob = Person(name='Bob' , age=30 , gender='male')

print (' %sis a %d year-old %s' % bob) # 2.x style string formatting

print ('{} is a{} year-old{}' . format (*bob))

print (' %sis a %d year-old %s' % (bob . name, bob . age, bob .gender))

print ('{} is a{} year-old{}' . format (bob . name, bob . age, bob . gender))

bob[0]

bob[' name'] # TypeError

bob . name

print (' %(name) s is a %(age) d year-old %(gender) s' % bob) # Doesn't work

print ('{name} is a {age} year-old {gender}' . format (*bob)) # Doesn't work

print ('{0.name} is a {0.age} year-old {0.gender}' . format (bob)) # Works!

(U) Finally, deque provides queue operations.

from collections import deque

d = deque (' ghi')

d . append (' j')

d . appendleft('f')

d . pop left()

d . rotate(l)

d. extendleft('abc')

make a new deque with three items

add a new entry to the right side

add a new entry to the Left side

return and remove the Leftmost item

right rotation

extendleft() reverses the input order

(U) The collections module also provides Abstract Base classes for common Python interfaces. Their purpose and use is currently beyond the
scope of this course, but the documentation is reasonably good.

Doc ID: 6689695

(U) Slicing and Dicing with itertools
Given one or more list s, iterator s, or other iterable objects, there are many ways to slice and dice the constituent elements.
The itertools module tries to expose building block methods to make this easy, but also tries to make sure that its methods are useful in a variety of
situations, so the documentation contains a cookbook of common use cases. We only have time to cover a small subset of
the itertools functionality. Methods from itertools usually return an iterator, which is great for use in loops and list comprehensions, but not so good
for inspection; in the code blocks that follow, we often call list on these things to unwrap them.

(U) The chain method combines iterables into one super-iterable. The groupby method separates one iterator into groups of adjacent objects,
possibly as determined by an optional argument-this can be tricky, especially because there's no look back to see if a new key has been
encountered previously.

import itertools

list (itertools . chain(range (5),[5, 6])) == [0, 1, 2, 3, 4, 5, 6]

size_groups = itertools . groupby([l , 1, 2, 2, 2, 'p' , 'p' , 3, 4, 3, 3, 2])

[(key, list (vals)) for key, vals in size_groups]

(U) A deeply nested for loop or list comprehension might be better served by some of the combinatoric generators like product , permutations ,
or combinations .

iter_product = itertools . product([l , 2, 3],['a' , 'b' , 'c'])

list (iter_product)

iter_combi itertools . combinations("abcd" , 3)

list_combi = list (iter_combi)
list combi

iter_permutations = itertools . permutations("abcd" , 3)

list (iter_permutations)

(U) itertools can also be used to create generators:

counter = itertools . count(0, 5)

next (counter)

print (list (next (counter) for c in range (6)))

Doc ID: 6689695
(U) Be careful. .. What's going on here?!?

counter = itertools . count(0.2 , 0.1)
for c in counter:

print (c)
if C > 1.5 :

break

cycle itertools . cycle('ABCDE ')

for i in range (10):
print (next (cycle))

repeat = itertools . repeat('againl ')

for i in range (S):
print (next (repeat))

repeat = itertools . repeat('againl ' , 3)
for i in range (S):

print (next (repeat))

nums = range (10 , 0, -1)
my_zip = zip (nums, itertools . repeat('p'))
for thing in my_zip:

print (thing)

Doc ID: 6689695

Functional Programming
0

...
Created over 3 years ago by._l ------' in COM

0

P 3321 3 2 193 38

Elli iM,BiM,Fil ~ di,H,i 119-Mdi

(b) (3) -P . L . 86 - 36

......... ·.·.···

.

(UHFOUO) A short adaptation ofl l~'A practical introduction to functional programming" in Python to
supplement COMP 3321 materials. Also discusses lambdas.

Recommendations

UNCLASSIFIED

(U) Introduction
(U) At a basic level , there are two fundamental programming styles or paradigms:

• imperative or procedural programming and

• declarative or functional programming.

(U) Imperative programming focuses on telling a computer how to change a program's state--its stored information-step by step. Most
programmers start out learning and using this style. It's a natural outgrowth of the way the computer actually works. These instructions can be
organized into functions/procedures (procedural programming) and objects (object-orientedprogramming) , but those stylistic improvements remain
imperative at heart.

(U) Declarative programming, on the other hand, focuses on expressing what the program should do, not necessarily how it should be
done. Functional programming is the most common flavor of that. It treats a program as if it is made up of mathematical-style functions: for a given
input x , running it through function f will always give you the same output f(x) , and x itself will remain unchanged afterwards. (Note that this
is not necessarily the same as a procedural-style function, which may have access to global variables or other "inputs" and which may be able to
modify those inputs directly.)

Doc ID: 6689695

(U) TL;DR
(U) The key distinction between procedural and functional programming is this: a procedural function may have side effects--it may change the
state of its inputs or something outside itself, giving you a different result when running it a second time. Functional programming avoids side
effects, ensuring that functions don't modify anything outside themselves.

(U) Note I p . L . 86 - 3 6

... . . .
(U) The contents of this notebook have been borrowed from the beginning of I le~say, "A practical introduction to functional
programming." A full notebook version of that essay can be found here. (Note that it uses Python 2.)

(U) Functional vs. Not
(U) The best way to understand side effects is with an example.

(U) This function is not functional:

a = 0

def increment () :
global a
a += 1

(U) This function is functional :

def increment (a):
return a + 1

(U) Map-Reduce
(U) Let's jump into functional cod ing. One common use is map-reduce, which you may have heard of. Let's see if we can make sense of it.

(U) map
(U) Conceptually, map is a function that takes two arguments: another function and a collection of items. It will

1. run the function on each item of the original collection and
2. return a new collection containing the results,

Doc ID: 6689695
3. leaving the original collection unchanged.

(U) In Python 3, the input collection must simply be iterable (e.g. list , tuple , string). Its map function returns an iterator that runs the input
function on each item of iterable.

(U) Example 1: Name Lengths
(U) Take a list of names and get a list of the name lengths:

name_lengths = map (len , ["Mary" , "Isla" , "Sam"])
print (list (name_lengths))

(U) Example 2: Squaring
(U) Square every number in a list:

squares = map (lambda x: x * x, (0, 1, 2, 3, 4])
print (list (squares))

(U) A digression on lambda

(U) So what's going on with that input function? lambda will let you define and use an unnamed function. Arguments fit between the lambda and
the colon while the stuff after the colon gets implicitly returned (i.e. without explicitly using a return statement).

(U) Lambdas are most useful when:

• your function is simple and

• you only need to use it once.

(U) Consider the usual way of defining a function :

def square (x):
return x * x

square(4)

we could have done this instead
squares = map (square, (0, 1, 2, 3, 4])
print (list (squares))

(U) Now let's define the same function using a lambda:

Doc ID: 6689695

lambda x: x * x

(U) Fine, but how do we call that resulting function? Unfortunately, it's too late now; we didn't store the result, so it's lost in the ether.

(U) Let's try again:

ima_function_variable = lambda x: x * x

type (ima_function_variable)

ima_function_var i able(4)

be careful!
ima_function_variable = 'something else'

our Lambda function is gone again
ima_function_variable(4)

(U) Example 3: Code Names

(U) OK, back to map . Here's a procedural way to take a list of real names and replace them with randomly assigned code names.

import random

names = ['Mary' , 'Isla' , 'Sam']
code_names = ['Mr. Pink' , 'Mr. Orange ' , 'Mr. Blonde']

for i in range (len (names)):
names[i] = random . choice(code_names)

print (names)

(U) Here's the functional version:

names = ['Mary' , 'Isla' , 'Sam']
covernames = map (lambda x: random . choice(['Mr. Pink' , 'Mr. Orange' , 'Mr. Blonde']) , names)
print (list (covernames))

(U) Exercise: Code Names ... lmproved?

Doc ID: 6689695
(U) The procedural code below generates code names using a new method. Rewrite it using map .

names = ['Mary' , 'Isla ' , 'Sam']

for i in range (len (names)):
names[i] = hash (names[i])

print (names)

your code here

reduce
(U) Reduce is the follow-on counterpart to map. Given a function and a collection of items, it uses the function to combine them into a single value
and returns that result.

(U) The function passed to reduce has some restrictions, though. It must take two arguments: an accumulator and an update value. The update
value is like it was before with map ; it will get set to each item in the collection one by one. The accumulator is new. It will receive the output from
the previous function call , thus "accumulating" the combined value from item to item through the collection .

(U) Note: in Python 2, reduce was a built-in function . Python 3 moved it into the functools package.

(U) Example

(U) Get the sum of all items in a collection.

import functools

sum = functools . reduce (lambda a, x: a + x, [0, 1, 2, 3, 4])
print (sum)

UNCLASSIFIED

Doc ID: 6689695

Recursion Examples
0

. _____ .,,.
Updated over 3 years ago byl

3 193 46 ------

(U) Some simple recursion examples in Python

Recommendations

Recursion

.
(b) (3)-P . L . 86 - 36

Recursion provides a way to loop without loops. By call ing itself on updated data, a recursive function can progress through a problem and traverse
the options.

Nth Fibonacci Number
htt12s://wiki12edia.nsa.ic.gov/en/Fibonacci number

This returns the nth Fibonacci number in the Fibonacci Sequence using recursion.

def nth_fibonacci (n):
if n < 1 :

return 0

elif n == 1 :

return 1
elif n == 2 :

return 1

else :
return nth_fibonacci(n -2) + nth_fibonacci(n -1)

nth_fibonacci(10)

Doc ID: 6689695

Fibonacci Sequence
This returns a list of the first n Fibonacci Numbers using recursion.

def fibonacci (n, seq=[]):
if len (seq) == n:

return seq
elif len (seq) == 0 :

return fibonacci(n, [1])
elif len (seq) == 1 :

return fibonacci(n, [1, 1])
else :

next_value = seq[-2] + seq[-1]
return fibonacci(n, seq + [next_value])

fibonacci(S)

Simple Game
This simple game just takes in a list of nine elements and tries to modify each slot until all the numbers from 1 to 9 are in the list.

import random

Doc ID: 6689695

def improve (input_list, missing) :
random_index = random . choice(list (range (len (input_list))))
random_value = random . choice(missing)
new_list = input_list[:]
new_list[random_index]
return new_list

def find_missing (input_list) :

random_value

missing = [x for x in list (range (l , 10)) if x not in input_list]
return missing

def one_to_nine (input_list):
print (input_list)
missing = find_missing(input_list)

if len (missing) == 0 :
return input_list

else :
new_list = improve(input_list, missing)
return one_to_nine(new_list)

one_to_nine([l , 1, 1, 1, 1, 1, 1, 1, 1])

Simple Game Revised
This revision of the same simple game comes up with a list of possible improvements and tries to pick the best one to pursue. You'll notice that it
takes fewer attempts to reach an anser than the original version of this simple game.

Doc ID: 6689695

def improve (input_list, missing):
random_index = random . choice(list (range (len (input_list))))
random_value = random . choice(missing)
new_list = input_list[:]
new_list[random_index]
return new_list

def find_missing (input_list):

random_value

missing = [x for x in list (range (l , 10)) if x not in input_list]
return missing

def score (input_list):
missing = find_missing(input_list)
return (len (missing), input_list)

def best_scoring_list (scored_lists):
lowest = 100
best_list = []

for x in scored_lists:
score = x[0]
input_list = x[l]

if score < lowest:
lowest = score
best_list = input_list

return best_list

def one_to_nine (input_list):
print (input_list)
missing = find_missing(input_list)

if len (missing) == 0 :
return input_list

else :
possible_improvements = [improve(input_list, missing) for i in range (len (missing))]
scored_improvements = [score(i) for i in possible_improvements]
best_list = best_scoring_list(scored_improvements)
return one_to_nine(best_list)

Doc ID: 6689695

one_to_nine([l , 1, 1, 1, 1, 1, 1, 1, 1])

Simple Game as a Tree
We can think of our strategy as a tree of options that we traverse, following branches that show that they're going to improve our chances of finding
a solution. This is an extremely simplified form of what many video games use for their Al. We put our possible_improvements in a generator so
they will only be created as needed. If we put them in a list comprehension as before, then all possible improvements would be generated even
though many of them will likely go unused. In the end, we return any() with a generator for the branches. Since any() only needs one item to be
True, it will return True as soon as a solution is found ; when len(missing) == 0.

You'll notice that this results in more iterations of one_to_nine() than in the previous revision . However, the previous revision also generated a lot of
data that ends up getting discarded. In other words, there's probably more processing and memory consumed by the previous revision behind the
scenes.

def improve (input_list, missing):
random_index = random . choice(list (range (len (input_list))))
random_value = random . choice(missing)
new_list = input_list[:]
new_list[random_index] = random_value
return new_list

def find_missing (input_list):
missing = [x for x in list (range (l , 10)) if x not in input_list]
return missing

def one_to_nine (input_list, prev_missing=None) :
print (input_list)
missing = find_missing(input_list)

if prev_missing is None :
return one_to_nine(input_list, missing)

elif len (missing) == 0 :
return True

elif len (missing) > len (prev_missing) :
return False

else :
possible_improvements = (improve(input_list, missing) for i in range (len (missing)))
return any ((one_to_nine(p, missing) for p in possible_improvements))

Doc ID: 6689695

one_to_nine([l , 1, 1, 1, 1, 1, 1, 1, 1])

Doc ID: 6689695

Module: Command Line Arguments
0

.
• • ■ • • • • • • • • • • • • •

Updated almost 2 years ago by ... , -------t'I in COMP 3321
3 323 123

@\,M,i

(U) Module: Command Line Arguments

Recommendations

UNCLASSIFIED

(b) (3)- P . L . 86-36

(U) Most command line programs accept options and arguments, and many even provide help messages that indicate what options are available,
and how they· are to be used. For example, the utility program mv takes two arguments, and most often moves the first argument (the source) to
the second (the destination). It has other ways of operating, which are enabled by optional flags and arguments; from a command prompt, type mv
--help to see more.

(U) There are several ways to enable this type of functionality in a Python program, and the best way to do it has been a source of contention. In
particular, this lesson will cover the argparsemodule, which was added to the standard library in Python 2.7, and not the optparse module which
was deprecated at that time.

(U) Everything passed as arguments to a Python program is available in the interpreter as the list of strings in sys. argv . In an interactive
session , sys. argv always starts out as [• ·] . When running a script, sys. argv[e] is the name of the script. We start by examining
what sys. argv looks like. Put the following commands in a file called argtest. py or similar:

import sys
print (sys . argv)

Doc ID: 6689695

... or make python do it!
contents = '''import sys
print(sys.argv)

with open ('argtest.py' , 'w') as f:
f .write(contents)

(U) Close the file and execute it from the command line with some arguments:

the '!' at the beginning tells jupyter to send what follows to the command Line
(upython3 argtest . py - xzf -- v foo -- othervar=bar filel file2

=> ['argtest.py', '-xzf', '--v', 'foo', '--othervar=bar', 'filel', 'file2']

(U) In all of the argument parsing that follows, sys. argv will be involved, although that may happen either implicitly or explicitly. Although it is often
unwise to do so within a script, sys.argv can be modified, for instance during testing within an interactive session.

(U) Note that in Jupyter you still have argv , but it may not be what you expect. If you look at it, you'll see how this Python 3 kernel is being called:

import sys
print (sys . argv)

(U) The Hard Way: getopt
(U) For programs with only simple arguments, the getopt module provides functionality similar to the getopt function in C. The main method in the
module is getopt , which takes a list of strings, usually sys. argv[l:] and parses it according to a string of options, with optional long options,
which are allowed to have more than one letter; explanations are best left to examples. This method returns a pair of lists, one containing (option,
value) tuples, the other containing additional positional arguments. These values must then be further processed within the program; it might be
useful, for instance, to put the (option, value) tuples into a diet . If getopt receives an unexpected option, it throws an error. If it does not
receive all the arguments it requests, no error is thrown, and the missing arguments are not present in the returned value.

import getopt

getopt .getopt('-a arg' . split(), 'a:') # a expects an argument

getopt .getopt('-a arg' . split(), 'a:b') #nob, no problem

getopt . getopt('-b arg -a my-file.txt' . split() , 'ab:') # my-file.txt is argument, not option

Doc ID: 6689695

getopt . getopt('-a arg --output=other-file.txt my-file.txt' . split(), 'a:b' ,['output=']) # long options

(U) For programs that use getopt , usage help must be provided manually.

def usage ():
print ("""usage: my_program.py -[abh] filel, file2, ... """)

this won't actually find anything in Jupyter, since ipython3 probably doesn't have these options
opts, args = getopt . getopt(sys .argv[l :], 'abh')

opt_dict = dict (opts)

if '-h' in opt_dict:
usage()

(U) The argparse Module
(U) Integrated help is one of the benefits of argparse, along with the ability to specify both short and long options versions of arguments. There is
some additional complication in setting up argparse, but it is the right thing to do for all but the most simple programs.

(U) Basic Usage

(U) The main class in argparse is ArgumentParser . After an ArgumentParser is instantiated, arguments are added to it with
the add_argument method. After all the arguments are added, the parse_args method is called. By default, it reads from sys . argv[l :] , but can
also be passed a list of strings, primarily for testing. Both positional arguments (required) and optional arguments indicated by flags are supported .
An example will illustrate the operation.

import argparse

parser = argparse .ArgumentParser()

parser . add_argument('n')

parser . add_argument('-f')

parser . add_argument('-i' , •--input')

parser . print_help()

parser . parse_args('abc -f xyz' . split())

Doc ID: 6689695

parser . parse_args('-f xyz abc - - input=myfile.txt' . split())

parser . parse_known_args('-f xyz abc --input=myfile.txt -o otherfile .txt' . split())

args = parser . parse_args('-f xyz abc --input=myfile.txt' . split())

args . f

(U) As seen in the final two lines, positional arguments and optioned arguments can come in any order, which is not the case with getopt. If multiple
positional arguments are specified, they are parsed in the order in which they were added to the ArgumentParser . The object returned
by parse_args is called a Names pace , but it is just an object which contains all the parsed data. Unless otherwise specified, the attribute names are
derived from the option names. Positional arguments are used directly, while short and long flags have leading hypens stripped and internal
hyphens converted to underscores. If more than one flag is specified for an argument, the first long flag is used if present; otherwise, the first short
flag is used.

(U) Here is how argparse could look in your code.

import argparse
parser = argparse .ArgumentParser()
parser . add_argument('n')
parser . add_argument('-f')
parser . add_argument('-i' , '--input')
args = parser . parse_args()

print (args)' ·IJ
contents = '' 'import argparse
parser= argparse.ArgumentParser()
parser.add_argument('n')
parser.add_argument('-f')
parser.add_argument('-i', ' - - input')
args = parser.parse_args()

print(args)

with open ('argparsetest.py' , 'w') as f:
f .write(contents)

(U) Now we can simulate running it:

(!]python3 argparsetest . py -f xyz abc -- input=myfile .txt

Doc ID: 6689695

[I)python3 argparsetest . py -h

(U) Advanced Options

(U) The add_argument method supports a large number of keyword arguments that configure behavior more finely than the defaults. For instance,
the type argument will make the parser attempt to convert arguments to the specified type, such as int , float , or file . In fact, you could use
any class for the type, as long as it can be constructed from a single string argument.

parser = argparse .ArgumentParser()

parser . add_argument('n' , type=int)

parser . parse_args('S ' . split())

(U) The nargs keyword lets an argument specify a fixed or variable number of arguments to consume, which are then stored into a list. This
applies to both positional and optional arugments. Giving nargs the value '? · makes positional arguments optional, in which case
the default keyword is required.

parser = argparse .ArgumentParser()

parser . add_argument('n' , nargs=2)

parser . add_argument(' - m' , nargs='*') # arbitrary arguments

parser . parse_args('n1 n2 -ma b c' . split())

parser . add_argument('o' , nargs='?' , default='OoO')

parser . parse_args('nl n2 oOo -ma b c' . split())

(U) The default keyword can also be used with optional arguments. When an optional argument is always used as as a flag without parameters, it
is also possible to use the action= · store_const' and const keywords. In this case, when the option is detected, the Namespace is given an
appropriately-named attribute with const as its value. If the option is not present in the parsed args, the attribute is created with the value given
in default , or None if default isn't set.

parser = argparse .ArgumentParser()

parser . add_argument('-n' , action='store_const' , const=7)

parser . add_argument(' -b ' , action=' store_true')

Doc ID: 6689695

parser . add_argument('- c' , action='store_const' , const=S , default=3)

parser . parse_args([])

parser . parse_args('-n -b' . split())

parser . parse_args('-cbn' . split())

(U) The action keyword can take other arguments; for instance, action=' store_ true ' and action= ' store_false' can be used instead of
setting const to a boolean value.

(U) Once again, we have only scratched the surface of a module, argparse in this case. Check out the documentation for more details (e.g.
changing attribute names with the dest keyword, writing custom action functions, providing different parsers for subprograms).

UNCLASSIFIED

Doc ID: 6689695

Module: Dates and Times
0

. ...
Updated 10 months ago by J-----1 in COMP 3321

3 2 450 204 •

1111 di,M,i IMMl11il 11;;.;:.:; i+MA·MM

(U) How to manipulate dates and times in Python.

Recommendations

UNCLASSIFIED

(U) Introduction

(b) (3) - P . L . 86 - 36

.... --------­.

(U) There are many great built-in tools for date and time manipulation in Python. They are spread over a few different modules, which is a little
annoying .

(U) That being said , the datetime module is very complete and the most useful, so we will concentrate on that one that most. The other one that
has some nice methods is the time module.

(U) time Module
(U) The time module is handy for its time accessor functions and sleep command. It is most useful when you want quick access to the time but
don't need to manipulate it.

import time

time . time() # "epoch" time (seconds since Jan. 1st~ 1970)

time . gmtime()

Doc ID: 6689695

time . localtime()

time . gmtime() == time . localtime()

time . asctime() # will take an optional timestamp

time . strftime(' %c ') # many formatting options here

time . strptime(' Tue Nov 19 07 :04 :38 2013')

(U) The last method you might use from the time module is sleep . (Doesn't this seem out of place?)

time . sleep(10) # argument is a number of seconds
print ("I' m awake !")

(U) datetime Module
(U) The datetime module is a more robust module for dates and times that is object-oriented and has a notion of datetime arithmetic.

(U) There are 5 basic types that comes with the datetime module. These are:

1. date : a type to store the date (year, month, day) using the current Gregorian calendar,
2. time : a type to store the time (hour, minute, second, microsecond, tzinfo--all idealized , with no notion of leap seconds),
3. datetime : a type to store both date and time together,
4. timedelta : a type to store the duration or difference between two date, time, or datetime instances, and
5. tzinfo : a base class for storing and using time zone information (we will not look at this).

(U) date type
import datetime

datetime . date(2013 , 11 , 19)

datetime .date . today()

datetime . date . fromtimestamp(time . time())

today = datetime . date . today()

today .day

Doc ID: 6689695

today . month

today . timetuple()

today .weekday() # 0 ordered starting from Monday

today . isoweekday() # 1 ordered starting from Monday

print (today)

today . strftime(' %d %m %Y ')

(U) time type
t = datetime . time(8, 30, 50, 0)

t . hour = 9

t . hour

t . minute

t . second

print (t)

print (t . replace(hour=12))

t . hou r = 8
print (t)

(U) datetime type
dt = datetime . datetime(2013 , 11, 19, 8, 30 , 50, 0)

print (dt)

datetime . datetime . fromtimestamp(time . time())

Doc ID: 6689695

now = datetime . datetime . now()

(U) We can break apart the datetime object into date and time objects. We can also combine date and time objects into
one datetime object.

now. date()

print (now .date())

print (now . time())

day = datetime . date(2011, 12, 30)

t = datetime . time(2, 30, 38)

day

t

dt = datetime . datetime . combine(day,t)

print (dt)

(U) timedel ta type
(U) The best part of the datetime module is date arithmetic. What do you get when you subtract two dates?

dayl = datetime . datetime(2013 , 10, 30)

day2 = datetime . datetime(2013 , 9, 20)

dayl - day2

print (dayl - day2)

print (day2 - dayl)

print (dayl + day2) # Of course not ... that doesn't make sense:)

Doc ID: 6689695
(U) The timedelta type is a measure of duration between two time events. So, if we subtract two datetime objects (or date or time) as we did
above, we get a timedelta object. The properties of a timedelta object are (days, seconds, microseconds, milliseconds, minutes, hours,
weeks) . They are all optional and set to Oby default. A timedelta object can take these values as arguments but converts and normalizes the
data into days, seconds, and microseconds.

from datetime import timedelta

day = timedelta(days=l)

day

now = datetime . datetime . now()

now + day

now - day

now + 300*day

now - 175*day

year = timedelta(days=365)

another_year = timedelta(weeks=40 , days=84 , hours=23 , minutes=50 , seconds=600)

year == another_year

year . total_seconds()

ten_years = 10*year
ten_years

(U) Conversions
(U) It's easy to get confused when attempting to convert back and forth between strings, numbers, time s, and datetime s. When you need to do it,
the best course of action is probably to open up an interactive session, fiddle around until you have what you need, then capture that in a well­
named function. Still, some pointers may be helpful.

(U) Objects of types time and datetime provide strptime and strftime methods for converting times and dates from strings (a.k.a. ***p***arsing)
and converting to strings (a.k.a. ***f***ormatting), respectively. These methods employ a custom SY.ntax that is shared across many programming
languages.

Doc ID: 6689695

print (ga.:.._dt)

(U) Localize the time using the Georgia timezone, then convert to Kabul timezone

kabul_tz = pytz . timezone('Asia/Kabul')
kabul_dt = ga_tz . localize(ga_dt) . astimezone(kabul_tz)
print (kabul_tz . normalize(kabul_dt))

(U) To get a list of all timezones:

pytz . all_timezones

(U) The arrow package
(U) The arrow package is a third party package useful for manipulating dates and times in a non-naive way (in this case, meaning that it deals with
multiple timezones very seamlessly). Examples below are based on examples from "20 Python Libraries You Aren't Using (But Should}" on Safari.

import ipydeps
ipydeps . pip('arrow')
import arrow

t0 = arrow . now()
print (t0)

tl = arrow . utcnow()
print (tl)

difference = (t0 - tl) . total_seconds()

print ('Total difference: %.2f seconds' % difference)

t0 = arrow . now()
t0

t0 . date()

t0 . time()

t0 . timestamp

Doc ID: 6689695

t0 .year

t0 . month

t0 .day

t0 . datetime

tl .datetime

t0 = arrow. now()
t0 . humanize()

t0 . humanize()

t0 = t0 . replace(hours=-3 ,minutes=10)
t0 . humanize()

(U) The parsedate module
(U) The parsedate package is a third party package that does a very good job of parsing dates and times from "messy" input formats. It also does a
good job of calculating relative times from human-sytle inpu. Examples below are from "20 Python Libraries You Aren't Using (But Should)" on
Safari.

ipydeps . pip(' parsedatet i me ')
import parsedatetime as pdt

Doc ID: 6689695

cal = pdt . Calendar()

examples = [
"2016-07-16" ,
"2016/07/16" ,
"2016-7-16" ,
"2016/7/16" ,
"07-16-2016" ,
"7-16-2016" ,
"7-16-16" ,
"7/16/16" ,

#print the header
print ('{:30s}{:>30s}' . format ('Input' , 'Result'))
print ('=' * 60)

#Loop through the examples List and show that parseDT successfully parses out the date/time based on the messy values
for e in examples:

dt, result = cal . parseDT(e)
print (' {:<30s}{:>30}' . format ("" + e + , dt . ctime()))

Doc ID: 6689695

examples = [
"19 November 1975" ,
"19 November 75" ,
"19 Nov 75" ,
"tomorrow" ,
"yesterday" ,
"10 minutes from now" ,
"the first of January, 2001" ,
"3 days ago" ,
"in four days' time" ,
"two weeks from now" ,
"three months ago" ,
"2 weeks and 3 days in the future" ,

#print the time right now for reference
print ('Now : {}' .format (datetime . datetime . now() . ctime()), end=' \n\n ')

#print the header
print ('{:40s}{:>30s}' . format ('Input' , 'Result'))
print ('=' * 70)

#Loop through the examples List to show how parseDT can successfully determine the date/time based on both messy input
and messy relative time offset inputs
for e in examples:

dt, result = cal . parseDT(e)
print ('{:<40s}{:>30} ' .format ('"' + e + "" dt . ctime()))

UNCLASSIFIED

Doc ID: 6689695

COMP3321 Datetime Exercises
0

.
Created almost 3 years ago byl-----, in COMP 3321

3 143 23 . .

(U) Datetime Exercises for COMP3321

Recommendations

(U) Datetime Exercise
(U) How long before Christmas?

(U) How many seconds since you were born?

(U) What is the average number of days between Easter and Christmas for the years 2000 - 2999?

(U) What day of the week does Christmas fall on this year?

(b) (3)-P . L . 86-36

(U) You get a intercepted email with a POSIX timestamp of 1435074325. The email is from the leader of a Zendian extremist group and says that
there will be an attack on the Zendian capitol in 14 hours. In Zendian local time, when will the attack occur? (Assume Zendia is in the same time
zone as Kabul)

Doc ID: 6689695

Module: Interactive User Input with ipywidgets
0

Updated almost 2 years ago by._l _____ I i~ C00MP 3321
3 3 393 200

(U) Covers the ipywidgets library for getting interactive user input in Jupyter

Recommendations
I

UNCLASSIF1EDHFOR OFFICIAL USE ONLY

(U) ipywidgets
(U) ipywidgets is used for making interactive widgets inside your jupyter notebook

I (b) (3) - P . L . 86 - 36

(U) The most basic way to get user input is to use the python built in i nput function. For more complicated types of interaction, you can use
ipywidgets

#input example (not using ipywidgets)
a=input ("Give me your input : ")
print ("your input was: "+a)

import ipywidgets
from ipywidgets import *

interact is the easiest way to get started with ipywidgets by creating a user interface and automatically calling the specified function

def f (x) :
return x*2

i nt eract(f, x=10)

Doc ID: 6689695

def g(check,y) :
print ("{} {}" . format (check,y))

interact(g,check=True,y="Hi there!")

But, if you need more flexibility, you can start from scratch by picking a widget and then calling the functionality you want. Hint: you get more widget
choices this way.

IntSlider()

w=IntSlider()

w

You can explicitly display using !Python's display module. Note what happens when you display the same widget more than once!

from !Python.display import display
display(w)

w. value

Now we have a value from our slider we can use in code. But what other attributes or "keys" does our slider widget have?

w.max

new_w=Int5lider(max=200)
display(new_w)

You can also close your widget

w. close()
new_w. close()

Here are all the available widgets:

Widget .widget_types

Categories of widgets
Numeric: lntSlider, FloatSlider, lntRangeSlider, FloatRangeSlider, lntProgress, FloatProgress, BoundedlntText, BoundedFloatText, lntText,
FloatText

Boolean: ToggleButton, Checkbox, Valid

Doc ID: 6689695
Selection: Dropdown, RadioButtons, Select, ToggleButtons, SelectMultiple

String Widgets: Text, Textarea

Other common: Button, ColorPicker, HTML, Image

Dropdown(options=["l" , "2" , "3" , "cat"])

bt = Button(description="Click mel")
display(bt)

Buttons don't do much on their own, so we have to use some event handling. We can define a function with the desired behavior and call it with the
buttons on_click method.

def clicker (b):
print ("Hellow World!!!!")

bt . on_click(clicker)

def f (change):
print (change['new'])

w = IntSlider()
display(w)
w. observe(f,names='value')

Wrapping Multiple Widgets in Boxes
When working with multiple input widgets, it's often nice to wrap it all in a nice little box. ipywidgets provides a few options for this-we'll
cover HBox (horizontal box) and VBox (vertical box).

HBox
This will display the widgets horizontally

Doc ID: 6689695

fruit_list = Dropdown(
options = ['apple' , 'cherry' , 'orange' , 'plum' , 'pear']

)

fruit_label = HTML(
value = 'Select a fruit from the list: '

)

fruit_box = HBox(children=[fruit_label, fruit_list])
fruit_box

VBox
This will display the widgets (or boxes) vertically

num_label = HTML(
value = 'Choose the number of fruits: '

num_options = IntSlider(
min=l ,
max=20

)

num_box = HBox(children=(num_label, num_options))

type_label = HTML(
value = 'Select the type of fruit: '

type_options = RadioButtons(
options=('Under-ripe' , 'Ripe' , 'Rotten')

)

type_box HBox(children=(type_label, type_options))

fruit_vbox VBox(children=(fruit_box, num_box, type_box))
fruit_vbox

Doc ID: 6689695

Specify Layout of th.e Widgets/Boxes
form_item_layout = Layout(

display='flex' ,
flex_ flow= 'row' ,
justify_content='space-between' ,
width= '70%' ,
align_items='initial' ,

veggie_label = HTML(
value = 'Select a vegetable from the list: ' ,
layout=Layout(width='20%' , height='65px')

veggie_options = Dropdown(
options=['corn' , 'lettuce' , 'tomato' , 'potato' , 'spinach'],
layout=Layout(width='30%' , height='65px')

veggie_box = HBox(children=(veggie_label, veggie_options),
layout=Layout(width='100%' , border='solid lpx' ,

height='100px'))
veggie_box

Retrieving Values from a Box

Doc ID: 6689695

box_values = {}
the elements in a box can be accessed using the children attribute
for index, box in enumerate (fruit_vbox . children):

for child in box . children:
if type (child) != ipywidgets . widgets .widget_string . HTML:

if index == 0 :
print ("The selected fruit is: • , child .value)
box_values['fruit'] = child . value

elif index == 1 :
print ("The select number of fruits is: " , str (child .value))
box_values[' count'] = child . value

elif index == 2 :
print ("The selected type of fruit is: " str (child . value))
box_values['type'] = child . value

box_values

UNCLASSIFIEDHFOR OFFICIAL USE ONLY

Doc ID: 6689695

Module: GUI Basics with Tkinter
0

Updated almost 2 years ago by.,1 _____ ,.1 i~ COMP
0

3ji1 ·
3 5 592 225

.
.1 (b) (3)-P . L. 86 - 36

mm 1111 1+1::1-FFfJN

(U) Module: GUI Basics with Tkinter

Recommendations

UNCLASSIFIEDHF0R OFFICIAL USE ONLY

(U) Tkinter
(U) Tkinter comes as part of Python, so is readily available for use-just import it. Note: While Tkinter is almost always available, Python can be installed without it, e.g. if Tcl/Tk is not
available when Python is compiled. Tk is a widget library that was originally designed for the Tel scripting language, but now has been ported to Perl , Ruby, Python, C++ and more.

(U) NOTE: In Python 2 it must be used as Tkinter with a capital T . I P . L . 86- 36

.... · .. (U) Setup
• • • • • • ♦ •

(UHFet:le-} This lesson cannot currently be run from Jupyter on LAB BENCH due to displayback limitations. It sho~ld. v.:,orJ< ~sing An"aco~d;.~ ;u;yter locall~ .. ---r~he examples ~n
also be copied to files and run as scripts from MACHINESHOP if your display is properly configured .•• • • • • ...
(U//F0U0) On MACJiiN~SHOP .

.

.
(U~.Joclisplcfyl:>ytho~ ;k objects back from MACHINESHOP, you will need to run the following on your MASH instance., r

c:=f,.IOTE: Not all steps may be necessary; verification needed. __________________ _.

yum -y groupinstall desktop
yum -y install tigervnc-server
yum -y install xrdp
/sbin/service xrdp start
chkconfig xrdp on
/sbin/service iptables stop

(U) What's a GUI (G.raphical User Interface)?

Doc ID: 6689695
(U) We all use them, some of us love them and hate them. Do we consider it 2- or 3-dimensional (2.5-dimensional)? Let's look at some very basic examples.

(U) Example 1
import tkinter as tk
root = tk . Tk()
root .mainloop()

We just created our first gui! But it doesn't do a whole lot yet. That is because we only created a blank/empty window that is waiting for our creation . tk . Tk() is the top level window that
we will create for every gui that we make.

Parts of a gui:
Choose widgets ==> Arrange in window ==> Add functionality

(U) Example 2
A first look at widgets!

#Basic gui with a Label and a button

import tkinter as tk
root = tk . Tk()

label = tk . Label(root, text="! am a label widget") #Create Label
button = tk . Button(root, text="! am a button") #create button

label. pack()
button . pack()
root .mainloop()

#Add Label to gui
#Add button to gui

(U) Widget Types

Type

Button

Canvas

CheckButton

Entry

Frame

Label

Description

Users click on buttons to trigger some action. Button clicks can be translated into actions taken by your program. Button s usually display text but
can show graphics.

A surface on which you can draw graphs and/or plots and also use as the basis of your own widgets.

A special type of Button that has two states; clicking changes the state of the button from one to the other.

Used to enter single lines of text and all kinds of input.

A container for other widgets. One can set the border and background color and place other widgets in it.

Used to display pieces of text or images , usually ones that won't change during the execution of the application.

Doc ID: 6689695
Type

Listbox

Message

Menu

Menu button

Radiobutton

Scale

Scrollbar

Text

Toplevel

Description

Used to display a set of choices. The user can select a single item or multiple items from the list. The Listbox can be also rendered as a set of radio
buttons or checkboxes.

Similar to Text but can automatically wrap text to a particular width and height.

Used to put a menu in your window if you need it. It corresponds to the menu bar at the top but can also be used as a pop-up.

Adds choices to your Menu s.

Represents one of a set of mutually exclusive choices. Selecting one Radiobutton from a set deselects any others.

Lets the user set numeric values by dragging a slider.

Implements scrolling on a larger widget such as a Canvas , Listbox , or Text .

A multi-line formatted text widget that allows the textual content to be "rich." It may also contain embedded images and Frame s.

A special kind of Frame that interacts directly with the window manager. Toplevel swill usually have a title bar and features to interact with the
window manager. The windows you see on your screen are mostly Toplevel windows, and your application can create
additional Toplevel windows if it is set to do that.

Other widgets: OptionMenu , LabelFrame , PanedWindow , Bitmap Class , Spinbox , Image Class .

(U) Example 3
Let's look at some other widget examples.
Also notice, that widgets have their own special "widget variables." Instead of using builtin python types, tk widgets use their own objects for storing this internal information. The tk widget
variables are: StringVar , IntVar , DoubleVar , and BooleanVar

Doc ID: 6689695
import tkinter as tk

root = tk . Tk()

tk . Label(root, text="Enter your Password:") . pack()
tk . Button(root, text="Search") . pack()

V = tk . IntVar()
tk .Checkbutton(root, text="Remember Me" , variable=v) . pack()
tk . Entry(root, width=30)

v2 = tk . IntVar()
tk . Radiobutton(root, text="Male" , variable=v2, value=l) . pack()
tk . Radiobutton(root, text="Female" , variable=v2, value=2) . pack()

var = tk . IntVar()
tk . OptionMenu(root, var, "Select Country" , "USA" , "UK" , "India" , "others") . pack()
tk .Scrollbar(root, orient='vertical ') . pack()

root . mainloop()

(U) Three ways to configure a widget
1. (U) Setting the values during initialization. (The way we have been doing it so far) .
2. (U) Using keys to set the values.
3. (U) Using the widget's configure method.

(U) Widget Attributes
(U) There are tons of options that can be set, but here are a few of the important ones.

Attribute Description

background / bg The color of the body of the widget (e.g. 'red' , 'blue' , 'green' , ·black·).

foreground / fg The color used for text.

padx, pady The amount of padding to put around the widget horizontally and vertically. Without these the widget will be just big enough for its content.

borderwidth Creates a visible border around a widget.

height, width Specifies the height and width of the widget.

disableforeground When a widget is disabled, this is the color of its text (usually gray).

State Default is •normal' but also can use 'disabled· or 'active·

Doc ID: 6689695

(U) Example 4
Let's try redoing Example 2 using the key/value method to make our label and the . configure O method to make our button.

#Basic gui with a label and a button

import tkinter as tk
root = tk . Tk()

label = tk . Label(root)
label["text" J="I am a labe l widget"
button = tk . Button(root)
button . configure(text="I am a button")

label. pack()
button . pack()
root . mainloop()

#using keys

#using configure

#Add label to gui
#Add button to gui

(U) Geometry Managers
(U) Now that we know how to create widgets, we're on to step two: arranging them in our window!

(U) There are mainly two types of geometry managers:

• Pack

• Grid

(U) There is also a third--Place--but maybe that's not for today.

(U) Pack
(U) Quick, easy, effective. If things get complicated, use Grid instead.

Attribute

fill

expand

side

Description

Can be x , v , or Both . x does the horizontal, v does the vertical.

False means the widget is never resized, True means the widget is resized when the container is resized.

Which side the widget will be packed against (TOP ' BOTTOM ' RIGHT or LEFT).

(U) Example 5
The pack geometry manager arranges widgets relative to window/frame you are putting them in. For example, if you select side=LEFT it will pack you widget against the left side of the
widget.

Doc ID: 6689695

#ExampLe using pack geomtry manager

from tkinter import *
root = Tk()

parent = Frame(root)
pLacing widgets top-down
Button(parent, text=' ALL IS WELL ') . pack(fill=X)
Button(parent, text=' BACK TO BASICS ') . pack(fill=X)
Button(parent, text=' CATCH ME IF U CAN') . pack(fill=X)
pLacing widgets side by side
Button(parent, text=' LEFT ') . pack(side=LEFT)
Button(parent, text=' CENTER ') . pack(side=LEFT)
Button(parent, text=' RIGHT ') . pack(side=LEFT)
parent . pack()
root . main loop ()

(U) Example 6
Generally, the pack geometry manager is best for simple gui's, but one way to make more complicated gui's using pack is to group widgets together in a Frame and then add
the Frame to your window.

#ExampLe using pock geometry manager

from tkinter import *
root = Tk()

frame = Frame(root) #Add frame for grouping widgits

demo of side and fill options
Label(frame, text="Pack Demo of side and fill ") . pack()
Button(frame, text="A") . pack(side=LEFT, fill=Y)
Button(frame, text="B") . pack(side=TOP, fill=X)
Button(frame, text="C") . pack(side=RIGHT, fill=NONE)
Button(frame, text="D") . pack(side=TOP, fill=BOTH)
frame . pack()
note the top frame does not expand nor does it fill in

X or Y directions
demo of expand options - best understood by expanding the root widget and seeing the effect on all the three buttons below.
Label (root, text="Pack Demo of expand") . pack()
Button(root, text="I do not expand") . pack()
Button(root, text="I do not f ill x but I do not expand") . pack(expand 1)
Button(root, text="I fill x and expand") . pack(fill=X, expand=l)
root . mainloop()

(U) Grid

Doc ID: 6689695
(U) Use it when things get compl icated, but it can be complicated in itself!

Attribute

row

column

sticky

rowspan, columnspan

Description

The row in which the widget should appear.

The column in which the widget should appear.

Can be N , s . E , or w . One needs to actually see this work, but it's important if you want the widget to resize with everything else.

Widgets can start in one widget and occupy more than one row or column.

(U) Rowconfigure and columnconfigure
(U) Most layout definitions start with these.

I Option I Description I
I minsize I Defines the row's or column's minimum size. I
I pad I Sets the size of the row or column by adding the specified amount of padding to the height of the row or the width of the column. I
I weight I Detem,ines how additional space is distrbuted between the rows and columns as the frame expands. The higher the weight, the more of the additional space is taken up. A row
weight of 2 will expand twice as fast as that of 1. I

(U) Example 7
The grid geometry manager starts with row zero and column zero up in the top left hand corner of your window. When you add a widget using grid , the default
is row=0 and column=0 so you don't have to explicitly state it, although it is good practice.

#Basic example using grid geometry manager

fr0111 tkinter import *
root = Tk()
Label(root, text="Username") .grid(row=0 , sticky=W)
Label(root, text="Password") .grid(row=l , sticky=W)
Entry(root) . grid(row=0 , column=l , sticky=E)
Entry(root) . grid(row=l , column=l , sticky=E)
Button(root, text="Login") . grid(row=2 , column=l, sticky=E)
root . main loop()

(U) Example 8
You could create this example using pack ... But it you would probably need a lot of frames. Using grid for something like this is much easier!

Doc ID: 6689695

#More advanced example using geometry manager

from tkinter import *
parent = Tk()
parent .title(' Find & Replace ') #Title of window

#First Label and text entry widgits
Label(parent, text="Find : ") . grid(row=0 , column=0 , sticky='e ')
Entry(parent, width=60) . grid(row=0 , column=l , padx=2 , pady=2 , sticky=' we ' , columnspan=9)

#second Label and text entry widgits
Label(parent, text="Replace: ") . grid(row=l , column=0 , sticky=' e')
Entry(parent) . grid(row=l , column=l , padx=2 , pady=2 , sticky=' we ' , columnspan=9)

#buttons
Button(parent, text="Find ") . grid(
row=0 , column=10 , sticky=' e ' + 'w' , padx=2 , pady=2)
Button(parent, text="Find All") .grid(

row=l , column=10 , sticky=' e ' + 'w' , padx=2)
Button(parent, text="Replace") . grid(row=2 , column=10 , sticky='e' + 'w ' , padx=2)
Button(parent, text="Replace All") . grid(

row=3 , column=10 , sticky=' e ' + 'w' , padx=2)

#Checkboxes
Checkbutton(parent, text=' Match whole word only ') . grid(

row=2 , column=l , columnspan=4, sticky=' w')
Checkbutton(parent, text=' Match Case ') .grid(

row=3 , column=l , columnspan=4 , sticky=' w')
Checkbutton(parent, text=' Wrap around') . grid(

row=4 , column=l , columnspan=4 , sticky=' w')

#Label and radio buttons
Label(parent, text="Direction: ") . grid (row=2 , column=6 , sticky=' w')
Radiobutton(parent, text=' Up ' , value=l) . grid(

row=3 , column=6 , columnspan=6 , sticky='w ')
Radiobutton(parent, text=' Down ' , value=2) . grid(

row=3 , column=7 , columnspan=2 , sticky='e ')

#run gui
parent .mainloop()

(U) Object Oriented GUl's
Up until now, all our examples show how to use tkinter with out creating classes, but in reality, GUI programs usually get very large very quickly. To keep things organized, it's best to
encapsulate your GUI in a class and group your widget creation inside of class functions.

(U) Example 9

Doc ID: 6689695
Wrapping a GUI inside a class . Note that in real life, you probably won't be running a GUI from inside Jupyter. This example shows how to check if you are in main , which you will need if
you are running from the command line.

from tkinter import *

class Application (Frame):

class Application :: Basic Tkinter example

def create_widgets (self):
#Create Widget
self . hi_there = Button(self)
self . hi_there['text '] = ' hello'
self . hi_there['fg '] = ' blue '

#Arrange widget
self . hi_there . pack({ ' side ' : ' left ' })

#Create Widget
self .QUIT = Button(self)
self .QUIT['text '] = 'Quit '
self .QUIT[' fg '] = ' red '

#Arrange widget
self .QUIT . pack({ ' side ' : 'left' })

def _init_(self, master = None):

Constructor

Frame ._init_(self ,master)
self . pack{)
self . create_widgets()

def main ():
root = Tk()
app = Application(master=root)
app . mainloop()

if _name_
main()

main

(U) Callbacks and Eventing
(U)Most widgets have a command attribute to associate a callback function for when the widget is clicked.

Doc ID: 6689695
When you need your gui to respond to something other than a mouse click or a specific kind of mouse click, you can bind you widget to an event.

(U) Example 9.1
Add a simple callback function to example 9 using.

What does the print command do when you click the "hello" button?

What happens when you click the "Quit" button?

Hint: you really are "quitting" your program. It just doesn't destroy (that is, close) your window!

Doc ID: 6689695
from tkinter import *

class Application (Frame) :

class Application :: Basic Tkinter example

#Callback function
def say_hello (self) :

print (' Hello There ')

def create_widgets (self) :
#Create Widget
self . hi_there = Button(self)
self . hi_there[' text'] = ' hello '
self . hi_there[' fg '] = ' blue '

#Arrange widget
self . hi_there . pack({ ' side ' : ' left ' })
#call back functionality
self . hi_there[' command '] = self . say_hello

#Create Widget
self .QUIT = Button(self)
self .QUIT['text '] = 'Quit '
self .QUIT[' fg '] = ' red'

#Arrange widget
self .QUIT . pack({ 'side ' : ' left' })
#call back functionality
self .QUIT[' command '] = self . quit

def _init_(self , master = None):

Constructor

Frame ._init_(self ,master)
self . pack()
self . create_widgets()

def main ():
root = Tk() #create window
app = Application(master=root)
app . mainloop()

Doc ID: 6689695
if _name_ _main_

main()

(U) Example 9.2
(U) Using the key/value method made it easy to check we were following the pattern:

1. Choose widget
2. Add to window/arrange
3. Add functionality

But it is shorter to write the code using the initialize method. Even if your code isn't written in the order of these steps, this is still the order you want to think about them.

from tkinter import *

class Application (Frame):

class Application :: Basic Tkinter example

def say_hello (self):
print (' Hello There ')

def create_widgets (self):
self . hi_there = Button(self , text='hello' ,fg=' blue' ,command=self . say_hello)
self . hi_there . pack(side=' left ')

self .QUIT = Button(self,text=' quit ' ,fg=' red ' ,command=self .quit)
self .QUIT . pack(side='left')

def _init_(self , master = None):

Constructor

Frame ._init_(self ,master)
self . pack()
self . create_widgets()

def main ():
root = Tk()
app = Application(master=root)
app . main loop()

if _name_
main()

main

(U) Example 10

Doc ID: 6689695
(U) Now that we have covered the three basics of GU l's: selecting widgets, arranging them in our window, and adding functionality, let's try a more complicated example.

Doc ID: 6689695

from tkinter import *

class Application (Frame):

Application -- the main app for the Frame . .. It all happens here .

Let's define some Class attributes
mainwin_rows=ll
mainwin_cols=lS
ALL=N+S+E+W

def _init_(self ,master=None):

Constructor

Call Frames Constructor
Frame ._init_(self ,master)

- - Call Private Grid layout method
self ._conf_self_grid_size()

#- ---- ------ ----------- --- --------- -

--- Make a checkerboard with labels of different colors
self . checkers_main_win()

def _conf_self_grid_size (self):

I ' m laying out the master grid

These next two lines ensure that the grid takes up the entire
window
self .master . rowconfigure(0, weight=l)
self .master . columnconfigure(0,weight=l)

#---- ---- ---- ---- ------ ------- -- -- -- ----- -- ------ ---- ------ --
#- -- Now creating a grid on the main window
for i in range (self . mainwin_rows):

self . rowconfigure(i, weight=l)
for j in range (self .mainwin_cols):

self . columnconfigure(j, weight=l)
self . grid(sticky=self . ALL)

#----------- -- -------------------- ---------------------------

def colorgen (self):

Generator function that alternates between red and blue

while True :
yield ' red'

Doc ID: 6689695
yield 'blue'

def checkers_main_win (self):

Creates a checkerboard pattern grid layout

colors = self . colorgen()

for r in range (self .mainwin_rows):
for c in range (self .mainwin_cols):

txt = 'Item {0}, {l}' . format (r,c)

def main () :
root=Tk()

1 = Label(self,text=txt,bg=next (colors))
l . grid(row=r,column=c,sticky=self . ALL)

#set the size of our window
root . geometry('800x600')
#Add a title to our window
root . title('Awesome Gui -- It is way COOL')
app = Application(master=root)

app . mainloop()

if _name_
main()

main

(U) Exercise 10.1
(U) We have a lovely grid with labels. We don't want to disturb our grid , so let's put a new Frame on top. Notice how our frame lines up on the grid. It makes it really easy to see how
setting the row and column alignment works and also the rowspan and columnspan .

Doc ID: 6689695
from tkinter import *

class Application (Frame):

Application -- the main app for the Frame •.. It all happens here.

Let's define some Class attributes
mainwin_rows=ll
mainwin_cols=lS
ALL=N+S+E+W

def _ i nit_(self ,master=None):

Constructor

Call Frames Constructor
Frame ._init_(self ,master)

-- Call Private Grid Layout method
self ._conf_self_grid_size()

#-----------------------------------

#--- Make a checkerboard with Labels of different colors
self . checkers_main_win()

#-----------------------------------

#--- Add Frame 1 --­
self . add_framel()

#--------------------

def _conf_self_grid_size (self):

I'm laying out the master grid

These next two Lines ensure that the grid takes up the entire
window
self .master . rowconfigure(0, weight=l)
self .master .columnconfigure(0,weight=l)

#--
#--- Now creating a grid on the main window
for i in range (self .mainwin_rows):

self . rowconfigure(i, weight=l)
for j in range (self . mainwin_cols):

self . columnconfigure(j, weight=l)
self .grid(sticky=self . ALL)

#--

def colorgen (self):

Doc ID: 6689695

Generator function that alternates between red and blue

while True :
yield 'red'
yield 'blue '

def checkers_main_win (self):

Creates a checkerboard pattern grid layout

colors = self . colorgen()

for r in range (self .mainwin_rows):
for c in range (self .mainwin_cols):

txt = ' Item {0}, {1} ' . format (r,c)
1 = Label(self,text=txt,bg=next (colors))
l . grid(row=r,column=c,sticky=self . ALL)

def add_framel (self):

Add a frame with a text area to put stuff in.

self .framel=Frame(self ,bg=' red')
self . framel .grid(row=0 ,column=6 ,rowspan=10 ,columnspan=10,stick=self . ALL)

def main ():
root=Tk()
root .geometry('800x600')
root . title(' Awesome Gui - - It is way COOL ')
app = Application(master=root)

app . mainloop()

if _name_
main()

' _main_

(U) Exercise 10.2
Great! Now let's put a widget in our frame. Notice that while you can't mix grid and pack inside a conatainer, we can use pack inside our Frame even though we were using grid for
our top level window.

Exercise for reader: our Frame was red , but now that we added a text widget it doesn't look red anymore. What happened!? If we actually wanted a red text widget, what should we do
differently?

Doc ID: 6689695
fr011 tkinter import •

class Application (Frame):

Application -- the main app for the Frame ... It all happens here.

Let 's define some Closs attributes
mainwin_rows=ll
mainwin_cols=lS
ALL=N+S+E+W

def _ i nit_(self,master=None):

Constructor

Coll Frames Constructor
Frame ._init_(self ,master)

-- Call Private Grid Layout method
self ._conf_self_grid_size()

#-------------------- --------- ------

#- -- Make a checkerboard with Label s of different colors
self . checkers_main_win()

#-----------------------------------

#----Add Frame 1-------.
self . add_framel()

def _conf_self_grid_size (self):

I'm laying out the master grid

These next two lines ensure that the grid takes up the entire
window
self .master . rowconfigure(0, weight=l)
self .master . columnconfigure(0,weight=l)

#--
--- Now creati ng a grid on t he mai n window
for i in range (self .mainwin_rows):

self . rowconfigure(i, weight=l)
for j in range (self .mainwin_cols) :

self . columnconfigure(j, weight=l)
self . grid(sticky=self .ALL)
#----------- ---------------------------- ---------------------

def colorgen (self):

Generator function that alternates between red and blue

Doc ID: 6689695

while True :
yield ' red'
yield 'blue'

def checkers_main_win (self):

Creates a checkerboard pattern grid layout

colors = self . colorgen()

for r in range (self .mainwin_rows):
for c in range (self .mainwin_cols) :

txt = 'Item {0}, {1}' . format (r,c)
1 = Label(self,text=txt,bg=next (colors))
1. grid(row=r, column=c, stick-y=self . ALL)

def add_framel (self) :

A frame is a nice way to show how to map out a grid

self . framel=Frame(self,bg=' red')
self . framel .grid(row=0 ,column=6 ,rowspan=10 ,columnspan=10,stick=self. ALL)
self . framel .text_w=Text(self . framel)
self . framel .text_w. pack(expand=True,fill=BOTH)

def main ():
root=Tk()
root . geometry(' 800x600 ')
root . title(' Awesome Gui -- It is way COOL ')
app = Application(master=root)

app . main loop()

if _name_
main()

main

(U) Exercise 10.3
Let's add some another frame.

Doc ID: 6689695
from tkinter import •

class Application {Frame) :

Application -- the main app for the Frame • . . It all happens here.

Let's define some Class attributes
mainwin_rows=ll
mainwin_cols=lS
ALL=N+S+E+W

def _init_(self ,master=None):

Constructor

Call Frames Constructor
Frame ._init_(self ,master)

-- CaLL Private Grid Layout method
self ._conf_self_grid_size()

#-----------------------------------

#--- Make a checkerboard with Labels of different colors
self . checkers_main_win()

#-----------------------------------

#----Add Frame 1------­
self . add_framel{)

#---- Add Frame 2
self . add_frame2()

def _conf_self_grid_size (self) :

I ' m laying out the master grid

These next two Lines ensure that the grid takes up the entire
window
self .master . rowconfigure{0, weight=l)
self .master .columnconfigure(0,weight=l)

#--
#--- Now creating a grid on the main window
for i in range (self .mainwin_rows) :

self . rowconfigure(i, weight=l)
for j in range (self .mainwin_cols):

self . columnconfigure(j, weight=l)
self .grid(sticky=self .ALL)

#--

Doc ID: 6689695
def colorgen (self) :

Generator function that alternates between red and blue

while True :
yield ' red'
yield 'blue '

def checkers_main_win (self):

Creates a checkerboard pattern grid layout

colors = self . colorgen()

for r in range (self .mainwin_rows):
for c in range (self .mainwin_cols) :

txt = ' Item {0}, {1} ' .format (r,c)
1 = Label(self,text=txt,bg=next (colors))
l .grid(row=r,column=c,sticky=self .ALL)

def add_framel (self):

Add a frame with a text area to put stuff in.

self . framel=Frame(self,bg=' red')
self . framel .grid(row=0 ,column=6 ,rowspan=10,columnspan=10,stick=self .ALL)
self . framel . text_w=Text(self . framel)
self . framel . text_w. pack(expand=True,fill=BOTH)

def add_frame2 (self) :
Green frame /
self .frame2 = Frame(self ,bg='green ')
self .frame2 .grid(row=0 ,column=0 ,rowspan =5 ,columnspan=6 ,sticky=self .ALL)

def main () :
root=Tk()
root . geometry('800x600')
root . title(' Awesome Gui -- It is way COOL ')
app = Application(master=root)

app .mainloop()

if _name_
main()

main

What if we wanted our GUI to do something when we click on our green frame? Frame doesn't allow us to set command . But wait! Hope is not lost! We can bind our frame to an event...

Doc ID: 6689695

Binding to an event
(U) Not all widgets have a command option, but that doesn't mean you can't interact with them. Also, there may be instances when you want a response from the user other than a mouse
click (which is what the built in command function responds to). In these instances, you want to bind your widget to the appropriate event.

Format: modifier (optional) - event type - detail (optional)
For example: <Button-1> modifier is none , event type is Button and detail is one. This means the event is the left mouse button was cl icked. For the right mouse button, you would use
two as your detail.

Common event types: Button , ButtonRelease , KeyRelease , Keypress , Focusin , FocusOut , Leave (when the mouse leaves the widget), and MouseWheel .

Common modifiers: Alt , Any (used like <Any-KeyPress>), Control , Double (used like <Double-Button-1>)

Common details: These will vary widely based on the event type. Most commonly you will specify the key for KeyPress , ex: <KeyPress-Fl>

Exercise 10.4
Let's bind our green frame to the left mouse button cl ick and print out the coordinates of the cl ick. Since printing to our notebook or the command line is not terribly useful for GU l's let's
also display the coordinates in our text field

Doc ID: 6689695

from tkinter import *

class Application (Frame):

Application -- the main app for the Frame .. . It all happens here.

Let 's define some Class attributes
mainwin_rows=ll
mainwin_cols=lS
ALL=N+S+E+W

def _init_(self ,master=None):

Constructor

CaLL Frames Constructor
Frame ._init_(self ,master)

-- CaLL Private Grid Layout method
self ._conf_self_grid_size()
#--------- ---- ----- ----- --- -------- -

#--- Make a checkerboard with Labels of different colors
self . checkers_main_win()

#------- --- ------------- ------------

#- - - -Add Frame 1------­
self . add_framel()

#- --- Add Buttons
self . add_frame2()

def _conf_self_grid_size (self):

I'm laying out the master grid

These next two Li nes ensure that the grid takes up the entire
window
self .master . rowconfigure(0, weight=l)
self .master .columnconfigure(0,weight=l)
#------------------------------------ --------- ---------------
#- -- Now creating a gri d on the main window
for i in range (self .mainwin_rows):

self . rowconfigure(i, weight=l)
for j in range (self . mainwin_cols):

self . columnconfigure(j, weight=l)
self . grid(sticky=self . ALL)

#--

Doc ID: 6689695
def colorgen (self):

Generator function that alternates between red and blue

while True :
yield ' red'
yield ' blue'

def checkers_main_win (self):

Creates a checkerboard pattern grid layout

colors = self . colorgen()

for r in range (self .mainwin_rows) :
for c in range (self .mainwin_cols):

txt = 'Item {0}, {1}' . format (r,c)
1 = Label(self,text=txt,bg=next (colors))
l . grid(row=r,column=c, sticky=self .ALL)

def add_framel (self):

Add a frame with a text area to put stuff in.

self . framel=Frame(self,bg=' red')
self . framel .grid(row=0 ,column=6 ,rowspan=10 , columnspan=10,stick=self . ALL)
self . framel .text_w=Text(self . framel)
self . framel .text_w. pack(expand=True,fill=BOTH)

def add_frame2 (self):
Green frame /
self . frame2 = Frame(self,bg='green')
self . frame2 .grid(row=0 ,column=0 ,rowspan=5 ,columnspan=6 ,sticky=self .ALL)
self . frame2 . bind('<Button-1>' , self . frame2_handler)

def frame2_handler (self, event):
'''Handles events from frame2'''
msg = 'Frame 2 clicked at{} {}' .format (event . x,event .y)
print (msg)
self . framel .text_w. delete(l.0 ,END)
self . framel .text_w. insert(END, msg)

def main () :
root=Tk()
root . geometry('800x600')
root . title('Awesome Gui -- It is way COOL')
app = Application(master=root)

app .mainloop()

Doc ID: 6689695

if _name_

main()

main

(U) Example 10.5
Great! Let's add some buttons now. Even though buttons have a command attribute, it can be tricky to pass information about the button being clicked using it. We would have to write a
separate function for each button! Instead, let's use a key binding so we can access the button text from the event. Notice when we arrange the buttons we have to allign them by
incriments of three since they span three columns.

Doc ID: 6689695
from tkinter import *

class Application (Frame):

Application -- the main app for the Frame ... It all happens here.

Let's define some Class attributes
mainwin_rows=ll
mainwin_cols=l S
ALL=N+S+E+W

def _init_(self ,master=None):

Constructor

Call Frames Constructor
Frame ._init_(self ,master)

-- Call Private Grid Layout method
self ._conf_self_grid_size()

#-----------------------------------

#--- Moke a checkerboard with labels of different colors
self . checkers_main_win()

#-----------------------------------

#----Add Frame 1------­
self .add_framel()

#----Add Frame 2------­
self . add_frame2()
#---- Add Buttons----­
self . add_buttons()

def _conf_self_grid_size (self):

I'm laying out the master grid

These next two lines ensure that the grid takes up the entire
window
self .master . rowconfigure(0, weight=l)
self .master .columnconfigure(0,weight=l)

#--
#--- Now creating a grid on the main window
for i i n range (self .mainwin_rows):

self . rowconfigure(i, weight=l)
for j i n range (self .mainwin_cols):

self . columnconfigure(j, weight=l)
self .grid(sticky=self .ALL)

Doc ID: 6689695
#--- -------------------

def colorgen (self) :

Generator funct i on that alternates between red and blue

while True :
yield ' red '
yield ' blue '

def checkers_main_win (self):

Creates a checkerboard pattern grid layout

colors = self . colorgen()

for r in range (self .mainwin_rows) :
for c i n range (self .mainwin_cols):

txt = ' Item {0}, {1} ' .format (r,c)
1 = Label(self,text=txt,bg=next (colors))
l . grid(row=r,column=c,sticky=self . ALL)

def add_framel (self):

Add a frame with a text area to put stuff in .

self . framel=Frame(self ,bg=' red')
self . framel .grid(row=0 ,column=6 ,rowspan=10 ,columnspan=10,stick=self .ALL)
self . framel .text_w=Text(self . framel)
self . framel .text_w . pack(expand=True,fill=BOTH)

def add_frame2 (self) :
Green f rame !
self . frame2 = Frame(self ,bg=' green')
self . frame2 .grid(row=0 ,column=0 ,rowspan=5 ,columnspan=6,sticky=self .ALL)
self . frame2 . bind('<Button-1>' , self . frame2_handler)

def frame2_handler (self , event):
'' ' Handles events from frame2' ''
msg = ' Frame 2 clicked at{}{}' . format (event . x,event .y)
print (msg)
self . framel .text_w. delete(l.0 , END)
self . framel .text_w . insert(END, msg)

def add_buttons (self):
''' Add buttons to the bottom '' '
self . button_list=[J
button_labels = ['Red ' , ' Blue ' , 'Green ' , ' Black ' , ' yellow ']

Doc ID: 6689695
for c,bt in enumerate (button_labels):

b = Button(self,text=bt)
#span three columns and set the column alignment as
#multiples of three.
b.grid(row=10 ,column=c*3,columnspan=3 ,sticky=self .ALL)
#Bind buttons to button click.
b. bind(' <Button-1> ' , self . buttons_handler)
self . button_list . append(b)

def buttons_handler (self,event):

Event Handler for the buttons

button_clicked = event .widget[' text']
print (button_clicked)

self . framel .text_w .delete(l.0 ,END)
self . framel .text_w . insert(END, button_clicked)

def main ():
root=Tk()
root .geometry('800x600 ')
root . title(' Awesome Gui -- It is way COOL ')
app = Application(master=root)

app . main loop()

if _name_
main()

'_ main_

(U) Dialogs
(U) Tki nter provides a collection of ready-made dialog boxes to use:

• showinfo
• showwarning

• showerror
• askquestion
• askokcancel
• askyesno
• askyesnocancel

• askretry_cancel

Doc ID: 6689695

from tkinter import messagebox as mBox
from tkinter import Tk
root = Tk()
#This keeps the top level window from being drawn
root . withdraw()

mBox . showinfo(' Python Message Info Box' , ' A Python GUI created using tkinter : \nThe year is 2016 . ')
#mBox.showwarning('Pythan Message Warning Box ' , 'A Python GUI created using tkinter:\nWorning: There might be a bug in this code.')
#mBox.showerror('Pythan Message Error Box·, 'A Python GUI created using tkinter:\nError: Houston~ we DO have a serious PROBLEM! ')

Useful References:
Python GUI Programming Cookbook

By Buri<hard A. Meier

On safari: .l:!llp:/lncmd-ebooks-1.ncmd.nsa.,c.gov/9781785283758

Great overview of different widgets and also using "themed" tk widgets or ttk widgets .

Tkinter GUI Application Development Blueprints

By: Bhaskar Chaudhary

On safari: .!lllps:l/ncmd-ebooks-1.ncmd.nsa.,c.gov/9781785889738

Not all of the packages used in the examples are available, but this book is still a great reference for how to build and structure larger GUI projects.

Programming Python, 4th Edition

By: Mark Lutz

On safari: .bllps://ncmd-ebooks-1 .ncmd.nsa.,c.gov/9781449398712

Not a dedicated GUI book, this book does have several chapiers cover different GUI aspects. It spends more time explaining the underlying logic of GU l's and covering special cases that
can trip you up. It starts from the basics, but moves quickly, so I might not be the best resource for total novices.

UNCLASSIFIED//FOR OFFICIAL USE ONLY

Doc ID: 6689695

Python GUI Programming Cookbook
0

Updated over 1 year ago byl ___ ----t'

3 4 385 98 -----

.

(U) Code from "Python GUI Programming Cookbook"

Recommendations

Python GUI Programming Cookbook

By Burkhard A. Meier
On safari : httR://ncmd-ebooks-1.ncmd.nsa.ic.gov/9781785283758

I (b) (3) -P . L . 86-36 1

Doc ID: 6689695

#===
#Imports

#===
import tkinter as tk # basic gui
from tkinter import ttk # "themed tk" improved gui options
from tkinter import scrolledtext # For scrolling text boxes
from tkinter import Menu # For creating menus
from tkinter import Spinbox # For creating spin boxes
from tkinter import messagebox as mBox # For message boxes

#===
Initial framework setup for window, tabs, frames, etc.
#===

win = tk . Tk()
win .title("Python GUI")

Create instance
Add a title

win . iconbitmap(r'U:\private\anaconda3\DLLs\pyc.ico') #Change icon

tabControl = ttk . Notebook(win) # Create Tab Control

tabl = ttk . Frame(tabControl) # Create a tab
tabControl . add(tabl, text='Tab 1') # Add the tab

tab2 = ttk . Frame(tabControl) #Adda second tab
tabControl . add(tab2, text='Tab 2') # Make second tab visible

tab3 = ttk . Frame(tabControl) #Adda third tab
tabControl . add(tab3, text='Tab 3') # Make second tab visible

tabControl. pack(expand=1 , fill="both") # Pack to make visible

#Weare creating a container frame to hold all other widgets in tabl
monty = ttk . LabelFrame(tabl, text=' Monty Python ')
monty . grid(column=0 , row=0 , padx=8 , pady=4)

#Weare creating a container frame to hold all other widgets in tab2
monty2 = ttk . Labe1Frame(tab2, text=' The Snake ')

monty2 .grid(column=0, row=0 , padx=8 , pady=4)

Doc ID: 6689695

#===
#Callback functions
#=~===

def clickMe (): # Function for when button is clicked
action . configure(text='Hello ' + name .get()+' number ' +numberChosen .get() +' ! ')

Set Radiobutton global variables into a list.
colors = ["Pink" , "Magenta" , "Purple"]

#We have also changed the callback function to be zero-based, using the list instead of module-Level global variables.
Radiobutton callback function
def radCall ():

radSel=radVar .get()
if radSel -- 0 : monty2 . configure(text=colors[0])
elif radSel -- 1 : monty2 . configure(text=colors[l])
elif radSel -- 2: monty2 . configure(text=colors[2])

def _quit () :
win . quit()
win . destroy ()
#exit()

Display a Message Box
Callback function
def _msgBox ():

#mBox.showinfo('Python Message Info Box', 'A Python GUI created using tkinter:\nThe year is 2816. ')
#mBox.showwarning('Python Message Warning Box', 'A Python GUI created using tkinter:\nWarning: There might be a bug in thi!
#mBox.showerror('Python Message Error Box', 'A Python GUI created using tkinter:\nError: Houston~ we DO have a serious PRC
answer = mBox . askyesno("Python Message Dual Choice Box" , "Are you sure you really wish to do this?")
print (answer)

Spinbox callback
def _spin ():

value = spin . get()
print (value)
scr . insert(tk . INSERT, value + '\n')

#===
Create Menu bar

Doc ID: 6689695
#=-===
menuBar = Menu(win)
win .config(menu=menuBar)

fileMenu = Menu(menuBar, tearoff = 0)
fileMenu . add_command(label="New")
fileMenu . add_separator()
fileMenu . add_command(label="Exit" , command=_quit)
menuBar . add_cascade{label="File" , menu=fileMenu)

Add another Menu to the Menu Bar and an item
helpMenu = Menu(menuBar, tearoff=0)
helpMenu .add_command(label="About" , command=_msgBox)
menuBar . add_cascade(label="Help" , menu=helpMenu)

#create menu bar
#add menu bar to gui

#create menu
#add option to menu
#add separator to menu
#add option to menu
#add menu to menu bar

#create second menu
#add menu item
#add menu to menu bar

#+++

Contents Tab1
#+++

#=-===
Create Labels
#=-===

ttk . Label(monty , text="Enter a name:") . grid(column =0, row=0 , sticky=tk . W)
ttk . Label(monty, text="Choose a number:") . grid(column=l , row=0 , sticky=tk . W)

#=-===
Text entry box
#=-===

text Label position (0~0)

Another Label (with Location)

Adding a Textbox Entry widget
name = tk .StringVar()
nameEntered = ttk . Entry(monty, width=12 , textvariable=name)
nameEntered . grid(column=0 , row=l ,sticky=tk . W)
nameEntered . focus()

tk's version of a string (storage variable)
Entry box
Entry box Location
when opp starts~ put curser in box

#===
Combo box
#===
number = tk . StringVar() # tk string variable to hold numbewr
numberChosen = ttk .Combobox(monty, width=12 , textvariable=number, state = ' readonly') #combo box

Doc ID: 6689695
numberChosen[' values '] = (1, 2, 4, 42 , 100)
numberChosen .grid(column=l , row=l ,sticky=tk . W)
numberChosen . current(0)

options for combo box
location combo box

#=-===
Button
#=-===
action = ttk . Button(monty, text="Click Me!" , command=clickMe)
action .grid(column=2, row=l ,sticky=tk .W)

create button with text and function for when clicked
Position Button in second row, second column (zero-based)

#=-===
Spinbox
#=-===

Adding a Spinbox widget
spin = Spinbox(monty, values=(l , 2, 4, 42 , 100), width=S , bd=8 , command=_spin)
spin . grid(column=0 , row=2)

Adding a second Spinbox widget

#spinbox set of values

spin2 = Spinbox(monty, from_=0, to=10 , width=S , bd=8 , relief tk . RIDGE, command=_spin) #spinbox range of values

#Alternate relief options:
#spin2 = Spinbox(monty, values=(0, 50, 100), width=5, bd=20, relief= tk.FLAT, command=_spin)
#spin2 = Spinbox(monty, values=(0, 50, 100), width=5, bd=2B, relief= tk.GROOVE, command=_spin)

spin2 . grid(column=l , row=2)

#=-===
Checkboxes
#=-===

Creating three checkbuttons
chVarDis = tk . IntVar() # tk int variable, for check box state
checkl = tk . Checkbutton(monty, text="Disabled" , variable=chVarDis, state=' disabled') #disabled checkbox
checkl . select() # add checkmark
checkl .grid(column=0, row=4, sticky=tk .W) # position checkbox. sticky=tk.W means aligned west

chVarUn = tk . IntVar() # another tk in variable for checkbox state
check2 = tk . Checkbutton(monty, text="UnChecked" , variable=chVarUn) #un-checked checkbox
check2 .deselect() # set checkbox to not checked

Doc ID: 6689695
check2 .grid(column=1 , row=4, sticky=tk . W) # position checkbox

chVarEn = tk . IntVar() # checkbox int variable for checkbox state
check3 = tk . Checkbutton(monty, text="Enabled" , variable=chVarEn) #Checked checkbox
check3 . select() # set checkbox to . checked
check3 . grid(column=2 , row=4, sticky=tk .W) # position checkbox

#=-===
Scrollbox
#=-===

Using a scrolled Text control
scrolW 30
scrolH 3
scr = scrolledtext .ScrolledText(monty, width=scrolW,
scr .grid(column=0, row = 5, columnspan=3 ,sticky='WE')

scrollbox width
scrollbox height

height=scrolH, wrap=tk . WORD)
position scroll box

#+++

Contents Tab2
#+++

#=-===
Radio Buttons
#=~===

create three Radiobuttons using one variable
radVar = tk . IntVar()

#Next we are selecting a non-existing index value for radVar.
radVar . set (99)

#Now we are creating all three Radiobutton widgets within one Loop.
for col in range (3):

curRad = 'rad' + str (col)

create scroll box

curRad = tk . Radiobutton(monty2, text=colors[col], variable=radVar, value=col, command=radCall)
curRad .grid(column=col, row=6 , sticky=tk . W)

#===
Labels in a Labelsframe
#===
Create a container to hold Labels

Doc ID: 6689695
labelsFrame = ttk . Labe1Frame(monty2, text=' Labels in a Frame ')
labelsFrame . grid(column=0 , row=7) # position with padding

Place labels into the container element
ttk . Label(labelsFrame, text="Labell") .grid(column=0 , row=0)
ttk . Label(labelsFrame, text="Label2") .grid(column=0, row=l)
ttk . Label(labelsFrame, text="Label3") .grid(column=0, row=2)

#+++

Contents Tab3
#+++

tab3 = tk . Frame(tab3, bg='purple')
tab3 . pack()

#=-===
#Callback functions
#=-===

def checked ():

if chVarCr . get():

canvas = tk .Canvas(tab3, width=150 , height=80 , highlightthickness=0, bg='blue')
canvas . grid(row=l , column=0)
canvas = tk . Canvas(tab3, width=150, height=80 , highlightthickness=0 , bg='blue')
canvas . grid(row=0, column=l)

else :
canvas = tk . Canvas(tab3, width=150 , height=80 , highlightthickness=0 , bg='green')
canvas . grid(row=l , column=0)
canvas = tk . Canvas(tab3, width=150, height=80 , highlightthickness=0 , bg='green')
canvas . grid(row=0, column=l)

#=-===
Checkbox and canvases
===

for pinkColor in range (0, 2):
canvas = tk .Canvas(tab3, width=150, height=80 , highlightthickness=0 , bg='pink')

Doc ID: 6689695
canvas . grid(row=pinkeolor, column=pinkeolor)

chVarer = tk . IntVar() # another tk in variable for checkbox state
checker = tk .eheckbutton(tab3, text="eolor" , variable=chVarer,command=checked) #un-checked checkbox
checker . deselect() # set checkbox to not checked
checker . grid(row=0,column=0) # position checkbox

#===
Display GUI
#===
win .mainloop()

Fv~mnlP~ nf nthPr mP~~~nP hnYP~

from tkinter import messagebox as mBox
from tkinter import Tk
root = Tk()
root .withdraw()

mBox . showinfo('Python Message Info Box' , 'A Python GUI created using tkinter: \nThe year is 2016. ')

►

#mBox . showwarning('Python Message Warning Box', 'A Python GUI created using tkinter:\nWarning: There might be a bug in this coc
#mBox.showerror('Python Message Error Box'J 'A Python GUI created using tkinter:\nError: Houston~ we DO have a serious PROBLE~

►

from tkinter import *
root = Tk()
root . withdraw()
messagebox . showerror('Python Message Error Box' , 'A Python GUI created using tkinter : \nError : Houston~ we DO have a serious PF

from tkinter import messagebox as mBox
help(mBox)

►

Doc ID: 6689695

Module: Logging
0

.
Updated over 2 years ago byl------~I i~ COMP 3321

3 4 152 46

~ •MiiM,i
(U) Module: Logging

.

Recommendations

.
.

(U) There comes a time in every developer's career when he or she decides that there must be something better than debugging

(b) (3)-P . L . 8 6 - 36

with print statements. Fortunately, it only takes about one minute to set up basic logging in Python, which can help you diagnose problems in your
program during development, then suppress all that output when you use the program for real. After that, there's no looking back; you might even
start to use a real debugger someday. The logging module has many advanced configuration options, but you'll probably see benefits even if you
don't ever use any of them.

(U) At its heart, logging is a name for the practice of capturing and storing data and events from a program that are not part of the main output
stream. Logging also frequently uses the concept of severity levels: some captured data indicates serious problems, other data provides useful
information, and some details are useful only when trying to track down bugs in the logic. Capturing messages from any or all of the different
severity levels depends on who invoked the program, along with how and why it's being run .

(U) The Basics
(U) The logging module is included in the standard library. To begin using it with the absolute minimum effort possible, import it and start writing
messages at different levels.

import logging

logging . warning('You have been warned')

logging . critical('ABORT ABORT ABORT')

logging . info(' This is some helpful information ')

Doc ID: 6689695 ,
(U) The logging module has several levels, including DEBUG , INFO , WARNING , ERROR , and CRITICAL , which are just integer constants defined in
the module. Custom levels can bee added with the addLevelName method, but the default levels should usually be sufficient. Each of the module­
level functions warning , critic al , and info is shorthand for a collection of functionality, which can be accessed through separate methods if
fine-grained control is needed.

• Create a log message with severity at the level indicated (the method log(level, message) could also be used).

• Send that message to the root logger

• If the root logger is configured to accept messages of that level (or lower), send the message to the default handler, which formats the
message and prints it to the console.

(U) This explains why the call to logging. info did not print to the screen: its severity is not high enough. By default, the root logger is set to only
handle messages at the WARNING level or higher. The level of the root logger can be configured at the module level, but must be done before any
messages are sent. Otherwise, the level must be set directly on the logger.

[(level, getattr (logging,level)) for level in [' DEBUG' , ' INFO ' , 'WARNING ' , 'ERROR ' , ' CRITICAL ']]

logging . root . getEffectiveLevel()

logging . root .getEffectiveLevel()

logging . root . setLevel(logging . INFO)

logging .WARNING # True

logging . root .getEffectiveLevel() == logging . INFO # True

logging . info("Now this should get logged.")

logging . log(21 , "This will also get logged at a numbered custom level")

logging . basicConfig(level=logging . DEBUG)

logging . root .getEffectiveLevel() == logging . DEBUG # False

exit ()

New Session

import logging

logging . basicConfig(level=logging . INFO)

logging . info("This i s some information.")

logging . root . getEffectiveLevel() == logging . INFO # True

Doc ID: 6689695
(U) From all this, a strategy emerges around using logging to improve your debugging.

• Instead of print statements, add calls to logging. debug to your code.

• At the top of your script, use logging. basicConfig(level=logging. DEBUG) during development; switch
to level=logging. INFO or level=logging.WARNING for production.

• Optionally, make a command-line option for your script that enables debugging output (e.g. my_script.py - -verbose).

(U) So far, we have dealt with only the defaults: the logger logging. root , along with its associated Handler and Formatter . A program can
create multiple loggers, handlers, and formatters and connect them all together in different ways. Aside from the streamHandler already
encountered, the FileHandler is also very common; it writes messages to a file named in its constructor. For ease of exposition, we use only
StreamHandlers in our examples. Each handler has a setlevel method; a handler acts on a message only only if both the logger and
the handler have levels set at or below the severity level of the message. Unless logging. basicConfig{) has been called, handlers and
formatters must be explicitly defined.

logging . basicConfig()

warnlog = logging . getlogger('warnings ')

warnlog . setlevel{logging . WARN)

infolog = logging . getlogger('info ')

infolog . setlevel(logging . INFO)

infolog . info('An informational message')

info_handler = logging . StreamHandler()

infolog . addHandler(info_handler)

qm_formatter = logging . Formatter('%(name) s???%(message) s???')

info_handler . setFormatter(qm_formatter)

info_handler . setlevel{logging . ERROR)

warnlog . warning{ 'There it goes')

warnlog . info{ 'Not there anymore')

i nfolog . info("It's coming back")

infolog . error{ "Oops, it didn't make it")

Doc ID: 6689695
(U) In this example, infolog has two handlers: the default handler created by basicConfig and the explicitly set info_handler with its
distinctive ? ? ? -inspired formatter. This second handler only logs messages with severity equal to or higher than logging. ERROR , even though
the infolog passes it messages with severity level as low as logging. INFO , as can be seen by the fact that the default handler prints these
messages.

(U) Advanced Usage
(U) A variety of handlers have been written for different purposes. The RotatingFileHandler from the logging. handlers submodule automatically
starts new log files when they reach a size, and keeps only a specified number of backups. The TimedRotatingFileHandler is similar, but time­
based instead of size-based. Other handlers write messages to sockets, email , and over HTTP, TCP, or UDP.

(U) Formatters use old-style string formatting with % , and have access to a dictionary which contains several interesting_QrOQerties, including the
name of the logger, the level of severity, the current time, and other information about the environment surrounding the logging message. Custom
keys can be passed to the formatter with a dictionary passed via the extra keyword in logging. log or related shortcut methods,
e.g. logging.warning .

(U) If the configured levels are too restrictive , custom levels can be added. They must be assigned a number, which determines when messages at
that level will be handled. No shortcut method is added for custom levels, so calls must be made to the log method. Of course, it's easy to add
such a shortcut to the Logger class.

INFOWARN = 25

logging . addLevelName(INFOWARN, ' INFOWARN ')

def infowarn (self, message) :
self . log(INFOWARN, message)

logging . Logger . infowarn = infowarn

logger = logging .getlogger('info.warn ')

logger . infowarn("Halfway between i nfo and warni ng .")

Doc ID: 6689695

Module: Math and More
0 ·•

(b) (3) -P . L . 86 - 36

.
Updated about 2 years ago byl._ ____ .. l i~ COMP 3321

3 171 44 - -

.

(U) Module: Math and More

Recommendations
I

Math and More
The Math Module is extremely powerful. .. for doing math-y things. This page is mostly to demonstrate some of the neat things Python can do that are math related. We'll start with the
math module.

You can take this a step further and investigate cmath for complex operations. Most of what is in math is also in cmath .

math.py
import math
print (dir (math))

Constants of note

1tn (Greek letter pi): Ratio of circle's circumference to its diameter.

math . pi

Euler's number, e, (pronounced "Oil-er"): The mathematical constant that is the base of the natural logarithm

ex, 1 1 n
e = L - = lim (1 + -)

n=O n! n--+cx, n

e=rn=0oo1 n!=limn-+00(1 +1 n)n

Euler ' s number (pronounced "Oil-er")
The mothemotical constant
math . e

Logs and Exponents

Doc ID: 6689695

math . log10(10)

math . log10(100)

math . log10(1000)

math . log10(1)

math . log10(0.1)

math . log10(0)

math . log10(-1)

2**3

bui.Lt-in
pow (2, 3)

math . pow (2, 3) # Converts arguments to floats

The following demonstrating modular exponentiation. Some ways are WAY faster than others ...

pow(2, 3, S)

(2**3) %5

pow (100, 10000, 7)

(100**10000) % 7

pow (100 , 1000000, 7)

(100 ** 1000000) % 7

Trig Functions
Notice argument to the trig function is measured in radians, not degrees.

help(math . sin)

math . sin(0)

If radians the following would be 1:

math . sin(90)

So, we expect the following to be one:

math . sin(math . pi/2)

And the following should be O (halfway around the unit circle}:

Doc ID: 6689695

math . sin(math . pi)

Is this zero?!!? See the e-16 at the end? That's pretty close, say within rounding error, of 0. Just be careful that you don't check that it is exactly zero.

help(math . isclose)

print (math . sin(math . pi) == 0)

print (math . isclose(math . sin(math .pi), 0, abs_tol 10•~-15))

help(math . degrees)

help(math . radians)

math . degrees(math . pi)

math . radians(45) == math . pi / 4

Fun Example:
Save the first 1,000 of the Fibonacci sequence to a list (starting with 1, 1 not 0, 1).
Iterate over that list and print out how many digits each number is.

def fib_list (n = 1000, init = [1, 1]):
'''Returns a l ist of the first n Fibonacci numbers.'''
fib_list = init
for x in range (n-2):

fib_list .append(fib_list[-1] + fib_list[-2])
return fib_list

def fib_lengths (fib_list):
'''Returns a list containing the number of digits in each fibonacci number.
It can be calculated this way because the list passed in are integers.
Use as intended!'''
return [len (str(int (x))) for x in fib_list]

a = fib_list()
print (a[: 20])

a_lengths = fib_lengths(a)
print (a_lengths[: 20])

b = fib_list(init = [1.0, 1.0])
print (b[: 20])

b_lengths = fib_lengths(b)
print (b_lengths[:20])

def fib_lengths (fib_list) :
'''Returns a list containing the number of digits in each fibonacci number.'''
return [1 + math . floor(math . log10(x)) for x in fib_list]

Doc ID: 6689695

b_lengths = fib_lengths(b)
print (b_lengths[:20))

NumPy
Pronounced "Num - Py" ... not like stumpy ...

If running through labbench, run the next two lines. If running on jupyter-notebook through Anaconda, you can just import numpy.

import ipydeps

ipydeps . pip(' numpy ')

Now we can import numpy:

import numpy as np

numpy's main object is called ndarray . It is :

• homogeneous

• multidimensional

• array

Meaning, it is a table of elements, usually numbers. All elements are the same type. Elements are accessed by a tuple of positive integers.

Dimensions are called axes.
The number of axes is the rank.

t = np .array([l , 2, 1))

t

np . ndim(t) # used to be np.rank, but this is deprecated

a = np .array(np .arange(15) . reshape(3, 5))

a

np . ndim(a)

a . shape

a . ndim

a . dtype . name

size in bytes ... Like sizeof operator, but easier to get to.
a . itemsize

a . size

type (a)

Doc ID: 6689695
We have three ways to access "row" 1 of a:

a[l) a[1,) a[l,:]

a[l)

To get column in position 2:

a[:, 2]

To get single element "row" 0, column 2:

a[0, 2)

Creating and modifying array:

c = np .array([2, 3, 4)}

c .dtype . name

d = np .array([l.2 , 3.5 , 5.1))

d.dtype . name

Let's change one element of c:

c[l] = 4.5

c .dtype . name

Ut oh, the type didn't change. But we tried to add a float! Let's see what happened:

C

The array was updated, but the value we were adding was converted to an int64 . Be careful. The type matters!!

This doesn't work:

f = np .array(l , 2, 3, 4}

Needs to be this:

f = np . array([l , 2, 3, 4]}

Interprets a sequence of sequences as a two dimensional array. Sequence of sequence of sequences as a three dimenional array ... you get the pattern?

g = np .array([[l.5 , 2, 3),[4, 5, 6]))
g

Type can be specified at creation time:

h = np . array([[l , 2],[3, 4]), dtype complex)
print (h}
print ()
print (h . dtype . name)

Remember c? Here is how we can change it from integers to floats:

Doc ID: 6689695

print (c)

c = np .array(c, dtype = float)
print (c)

c[l) = 4.5
print (c)

Suppose you know what size you want, but you want it to have all zeros or ones and you don't want to write them all out. Notice there is one parameter we are passing for the dimensions,
but it is a tuple.

np . zeros((3, 4))

np . zeros((3, 4), dtype = i nt)

np . ones((2, 3, 4), dtype = np . int16)

The following is FAST, but dangerous. It does not initialize the entries in the array, but takes whatever is in memory. USE WITH CAUTION.

np . empty((2, 3))

You know range? Well , there is arange. Which allows us to create an array containing a range of numbers evenly spaced.

np . arange(10, 30, S) # Start, stop, step

np . arange(0 . 2, 0 . 3, 0.01) #Condo floats!!

Say we don't want to do the math to see what our step should be but we know how many numbers we want... that's what linspace is for! We get evenly spaced samples calculated over
the interval. It takes a start, stop and the number of samples you want. There are other optional arguments, but you can figure those out!

np . linspace(0, 2, 9) # 9 numbers evenly spaced numbers between e and 2, INCLUSIVE

Playing wth "matrices" ... or are they? The following are not necessarily the results of matrix operations. What exactly is going on here?

a

a + 1

a I 2

a ! I 2

pow (2,a)

b = a II 2

a + b

a * b # Not matrix multiplcotion

b. T # Transpose

Matplotlib

Doc ID: 6689695
Only if you ore on lobbench . If using anaconda you don 't need to do this .
If you haven't already improt ipydeps, uncomment the next line also before running
import ipydeps
ipydeps . pip(' matplotlib ')

import matplotlib.pyplot as plt
If you haven ' t imported numpy, do so !
#impart numpy as np

Line Plot
a = np . linspace(0, 10 , 100)
b = np . exp(-a)
plt . plot(a,b)
plt . show()

Histogram
from numpy.random
x = normal(size
plt . hist(x,bins
plt . show()

3D Plot

import
200)
30)

from matplotlib import cm

normal,rand

from mpl_toolkits.mplot3d import Axes3D
import matplotlib. pyplot as plt
import numpy as np
fig = plt . figure()
ax = fig . gca(projection=' 3d ')
X = np . arange(-5 , 5, 0.25)
Y = np . arange(-5 , 5, 0.25)
X, Y = np . meshgrid(X, Y)
R = np . sqrt(X**2 + Y**2)
Z = np . sin(R)
surf = ax . plot_surface(X, Y, Z, rstride=l , cstride=l , cmap=cm . coolwarm)
plt . show()

plt . plot([l , 2, 3], [1 , 2, 3], ' go-' , label=' line 1 ' , linewidth=2)
plt . plot{[l , 2, 3] , [1 , 4 , 9), 'rs ' , label=' line 2')
plt . axis([-2 , 5, -2 , 10])
plt . plot(a, b, color=' green ' , linestyle=' dashed ' , marker=' o ' , markerfacecolor=' blue ' , markersize=12)
plt . show()

Doc ID: 6689695

Sage
To be filled in .. .

Doc ID: 6689695

COMP3321: Math, Visualization, and More!
0

.
Updated almost 3 years ago by._1 _____ _.1 i~ COMP

0

3321
3 5 473 111

(U) Python Math, Visualization, and More!

• • ■ • • • • • • • • • • •

Recommendations

Python Math, Visualization, and More!

(b) (3)- P . L . 86- 36 1

This notebook will give a very basic overview to some mathematic~! and scientific
packages in Python, as well as some tools to visualize data.

Credit:
Much of this material is developed by Continuum Analytics, based on a tutorial created by R.R. Johansson.

What is NumPy?
Numpy is a Python library that provides multi-dimensional arrays, matrices, and fast operations on these data structures.

NumPy arrays have:
• fixed size

o all elements have the same type

■ that type may be compound and/or user-defined

o fast operations from:

■ vectorization - implicit looping

■ pre-compiled C code using high-quality libraries

■ NumPy default

■ BLAS/ATLAS

■ Intel's MKL

Doc ID: 6689695

NumPy's Uses and Capabilities
• Image and signal processing

• Linear algebra

• Data transformation and query

• lime series analysis

• Statistical analysis

Numpy Ecosystem
!0 ecosystem.li.9htbg.scaled-noalpha.png)

Run this t"f on LABBENCH
import ipydeps

packages = ['matplotlib ' , ' numpy']
for i in packages :

ipydeps . pip(i)

Let's install necesary packages

import numpy as np
import matplotlib as mpl
import numpy.random as npr
vsep = "\n------------------- \n"

matplotlib - 2D and 3D plotting in Python
This Line configures matpLotLib to show figures embedded in the notebook,
instead of opening a new window for each figure. More about that Later.
If you are using an old version of !Python, try using 'XpyLab inLine' instead.
%matplotlib inline

Introduction
Matplotlib is an excellent 2D and 3D graphics library for generating scientific figures. Some of the many advantages of this library include:

• Easy to get started

• Support for LaTeX formatted labels and texts

• Great control of every element in a figure, including figure size and DPI.

• High-quality output in many formats , including PNG, PDF, SVG, EPS, and PGF.

• GUI for interactively exploring figures and support for headless generation of figure files (useful for batch jobs).

Matplotlib is well suited for generating figures for scientific publications because all aspects of the figure can be controlled programmatically. This is important for reproducibility, and
convenient when one needs to regenerate the figure with updated data or change its appearance.

More information at the Matplotlib web page: bl!~P-!Q1!i.Q.Qrgl

Doc ID: 6689695
To get started using Matplotlib in a Python program, import the matplotlib.pyplot module under the name pit:

import matplotlib.pyplot as plt

The matplotlib MATLAB-like API
A great way to get started with plotting using matplotlib is to use the MATLAB-like API provided by matplotlib.
It is designed to be compatible with MATLAB's plotting functions, so if you are familiar with MATLAB, start here.

x = np . linspace(0, 5, 100)
y = X ** 2

x, y

plt . figure()
plt .plot(x, y, 'g')
plt . xlabel('x')
plt .ylabel('y')
plt .title('title')
plt . show()

plt . subplot(l , 2, 1)
plt .plot(x, y, 'r--')
plt . subplot(l , 2, 2)
plt .plot(y, x, 'g*-');

The matplotlib object-oriented API
The main idea with object-oriented programming is to have objects to which one can apply functions and actions, and no object or program states should be global (such as the
MATLAB-like API). The real advantage of this approach becomes apparent when more than one figure is created, or when a figure contains more than one subplot.

To use the object-oriented API, we start out very much like in the previous example, but instead of creating a new global figure instance, we store a reference to the newly created figure
instance in the fig variable, and from it we create a new axis instance axes using the add_axes method in the Figure class instance fig :

fig = plt . figure()

graph = fig . add_axes([0, 0, 1, 0.3]) # Left, bottom, width, height (range e to 1)

graph .plot(x, y, 'r')

graph . set_xlabel('x')
graph .set_ylabel('y')
graph .set_title('title');

!though a bit more code is involved, the advantage is that we now have full control of where the plot axes are placed, and we can easily add more than one axis to the figure:

Doc ID: 6689695
fig = plt . figure()

graphl = fig . add_axes([0.1 , 0.1 , 0.8 , 0.8]) # main axes
graph2 = fig . add_axes([0 . 2, 0.5 , 0.4 , 0.3]) # inset axes

main figure
graphl .plot(x, y, ' r ')
graphl .set_xlabel(' x')
graphl . set_ylabel(' y')
graphl .set_title('Title\n')

insert
graph2 . plot(y, x, ' g ')
graph2 . set_xlabel('y')
graph2 . set_ylabel('x')
graph2 . set_title('Inset Title');

To save a figure to a file, we can use the savefig method in the Figure class:

fig . savefig("filename. png")

seaborn - statistical data visualization
Seaborn is a Python visualization library based on matplotlib . It provides a high-level interface for drawing attractive statistical graphics.

Homepage for the Seaborn project: b1to://stanford,edu/-mwaskom/software/seaborn/

bokeh - web-based interactive visualization
Bokeh is a Python interactive visualization library that targets modern web browsers for presentation. Its goal is to provide elegant, concise construction of novel graphics in the style of
D3.js, but also deliver this capability with high-performance interactivity over very large or streaming datasets. Bokeh can help anyone who would like to quickly and easily create
interactive plots, dashboards, and data applications.

Homepage for Bokeh: httP.://bokeh.Ry~gl

NumPy Arrays
NumPy arrays (numpy .ndarray) are the fundamental data type in NumPy. They have:

• shape

• an element type called dtype

For example:

M, N = 5, 8

arr = np . zeros(shape=(M,N), dtype=float)
arr

Doc ID: 6689695
arrzeros = np . zeros(30)
print (arrzeros . dtype, arrzeros . shape)
arrzeros

arrzeros2 = np . zeros((30, 2))
print (arrzeros2 . dtype, arrzeros2 .shape)
arrzeros2

is the NumPy array corresponding to the two-dimensional matrix:

~default

NumPy has both a general N-dimensional array and a specific 2-dimensional matrix data type. NumPy arrays may have an arbitrary number of dimensions.

NumPy arrays support vectorized mathematical operation.

arr = np . arange(15) . reshape{ 3, 5)
print ("original: ")
print (arr)

print ()

print ("elementwise computed : ")
print (((arr+4) *2) % 30)
print (arr . dtype)

((arr . reshape{ 15,)+4)*2) % 30

((arr . reshape{ S, 3)+4)*2) % 30

arr . reshape{4, 7)

Array Shape
Many array creation functions take a shape parameter. For a 1 D array, the shape can be an integer.

print (np . zeros{shape=S , dtype=np . float16))

For nD arrays, the shape needs to be given as a tuple .

print (np . zeros(shape=(4, 3, 2), dtype=float), end=vsep)
print (repr (np . zeros(shape=(4, 3, 2), dtype=float)))

print (np . zeros{shape={2, 2, 2, 2)))

Array Types
All arrays have a specific type for their associated elements. Every element in the array shares that type. The NumPy terminology for this type is dtype. The basic types
are boo/, int, uint, float, and complex. The types may be modified by a number indicating their size in bits. Python's built-in types can be used as a corresponding dtype. Note, the
generic NumPy types end with an underscore ("_") to differentiate the name from the Python built-in.

Doc ID: 6689695
Python Type

bool

int

float

complex

Here is one example of specifying a dtype:

arr = np . zeros(shape=(S,), dtype=np .float_) # NumPy default sized float
print(arr, "->" , arr . dtype)

Watch out, though!

array = np .array([4192984799048971232 , 3, 4], dtype=np . int16)
array

np . floatlG('nan ')

Check the default type ...

np . array([l], dtype=int) . dtype

NumPy dtype

np.bool_

np.int_

np.float_

np.complex_

Now we'll take just a moment to define one quick helper function to show us these details in a pretty format.

def dump_array (arr):
print ("Xs array of Xs :" X (arr . shape, arr . dtype))
print (arr)

vsep = "\n--- - -----------------\n"

Array Creation
NumPy provides a number of ways to create an array.

np.zeros and np.ones
zrr = np . zeros(shape=(2, 3))
dump_array(zrr)

print (np .ones(shape=(2, S)))

one_arr = np . ones(shape = (2, 2), dtype=int)
dump_array(one_arr)

np.empty

Doc ID: 6689695
np. empty is lightning quick because it simply requests some amount of memory from the operating system and then does nothing with it. Thus, the array returned
by np. empty is uninitialized. Consider yourself warned. np. empty is very useful if you know you are going to fill up all the (used) elements of your array later.

DANGER/ uninitialized array
(re -run this cell and yau will very likely see different values)
err = np . empty(shape=(2, 3), dtype=i nt)
dump_array(err)

np.arange
np. a range generates sequences of numbers like Python's range built-in . Non-integer step values may lead to unexpected results; for these cases, you may prefer np . linspace and

see below. (For a quick - and mostly practical - discussion of the perils of floating-point approximations, see b..llps://docs.Qy.!bon.2rg/2/tutorial/floatingpoint.html).

• a single value is a stopping point

• two values are a starting point and a stopping point

• three values are a start, a stop, and a step size

As with range , the ending point is not included.

print ("int arg: %s" % np . arange(10), end=vsep)
print ("float arg: %s" % np . arange(10.0), end=vsep)
print ("step: %s" % np . arange(0, 12, 2), end=vsep)
print ("neg. step: %s" % np .arange(10, 0, -1.0))

np.linspace

cf. range(stop)
cf. range(stop)
#endpoint excluded

np. linspace(BEGIN, END, NUMPT) generates exactly NUMPT number of points, evenly spaced, on [BEGIN , END] [BEGIN,END]. Unlike Python's range and np.arange , this
function is inclusive at BEGIN and END (it produces a closed interval).

print ("End-points are included:" , end=vsep)
print (np . linspace(0, 10, 2), end=vsep)
print (np . linspace(0, 10, 3), end=vsep)
print (np . linspace(0, 10, 4), end=vsep)
print (np . linspace(0, 10, 20), end=vsep)

Diagonal arrays: np. eye and np. diag
np .eye(N) produces an array with shape (N,N) and ones on the diagonal (an NxN identity matrix).

print (np .eye(3))

Arrays from Random Distributions
It is common to create arrays whose elements are samples from a random distribution. For the many options, see:

• help(np.random)

• scipy

Doc ID: 6689695
Uniform on [O, 1)

print ("Uniform on [0,1):")
dump_array(npr . random((2, 5)))

Standard Normal
np. random has some redundancy. It also has some variation in calling conventions.

• standard_normal takes one tuple argument

• randn (which is very common to see in code) takes n arguments where n is the number of dimensions in the result

print ("std. normal - N(0, 1) : ")
dump_array(npr . standard_normal((2, 5)))
print (vsep)
dump_array(npr . randn(2, 5}} # one tuple parameter

Arrays From a Python List. .. and a warning,
It is also possible to create NumPy arrays from Python lists and tuples. While this is a nice capability, remember that instantiating a Python list can take relatively long compared to
directly using NumPy building blocks. Other containers and iterables will not, generally, give useful results.

dump_array(np . array([l , 2, 3)))

print ()
dump_array(np . array([10.0, 20.0 , 3)))

Dimensionality is maintained within nested lists:

dump_array(np . array([[l , 2, 3) ,
[4 , 5 , 6))))

print ()
dump_array(np . array([[l.0, 2] ,

[3 , 4),

[5, 6]]))

Accessing Array Items

Indexing
Items in NumPy arrays may be accessed using a single index composed of multiple values

.default

Doc ID: 6689695

arr = np . arange(24) . reshape(4, 6) # random . randint(11, size=(4, 6))

print ("the array: ")
print (arr , end=vsep)

print ("index [3,2] . ,
print ("index [3]

arr[3, 2], end=vsep)
. , arr[3], end=vsep)

non-idiomatic, creates a view of arr[3} then indexes into that copy
print ("index [3][2]:" , arr[3][2])

Compare this with indexing into a nested Python list

alist = [list (row) for row in arr]
print (alist)
print (alist[3)[2])

try :
print (alist[3, 2])

except TypeError as e :
print ("Unhappy with multi-value index")
print ("Exception message:" , e)

Slicing
We can also use slicing to select entire row and columns at once:

!(default)(mef_numpy_slice_01 -noalpha.png) ![default](mef_numpy_slice_02-noalpha.png)

Important Differences Between Python Slicing and NumPy Slicing
• Python slicing returns a copy of the original data

o Changing the slice won't change the original.

• NumPy slicing returns a view of the original data

o Changing the slice will change the original data

The NumPy~g..Es!g~ has a lot more information.

Doc ID: 6689695
print ("array: ")
print (arr)

print ("\naccessing a row:")
dump_array(arr[2, :])

print ("\naccessing a column:")
dump_array(arr[:, 2])

print ("\na row:" , arr[2,:], "has shape:" , arr[2, :] . shape)
print ("\na col:" , arr [: , 2], "has shape:" , arr[:, 2] . shape)

Bear in mind that numerical indexing will reduce the dimensionality of the array. Slicing from index to index+l can be used to keep that dimension if you need it.

print ("lost dimension:" , end=' ')
dump_array(arr [2, 1:4])

print ("\nkept dimension:" , end= ' ')
dump_array(arr(2:3, 1:4])

Region Selection and Assignment
Multiple slices, as part of an index, can select a region out of an array

print ("array: ")
print (arr)

print ("\na sub-array:")
dump_array(arr [l : 3, 2:4])

Slices are always views of the underlying array. Thus, modifying them modifies the underlying array

arr = np . arange(24) . reshape(4, 6)
print ("even elements (at odd indices) of first row : ")
print (arr [0, : : 2]) # select every other element from first row

arr(0,:: 2] = -1 # update is done in-place, no copy

print ("\nafter assinging to those:")
print (arr)

Working with Arrays
Math is quite simple- and this is part of the reason that using NumPy arrays can significantly simplify numerical code. The generic pattern array OP scalar (or scalar OP array), applies
OP (with the scalar value) across elements of array.

Doc ID: 6689695
array OP scalar applies across all elements and creates a new array
arr = np . arange(10)
print (" arr:" , arr)
print (" arr + 1: ", arr + 1)
print (" arr* 2:" , arr * 2)
print ("arr ** 2:" , arr ** 2)
print ("2 ** arr:" , 2 ** arr)

bit-wise ops (cf. np.logical_and, etc.)
print (" arr I 1:" , arr I 1)
print (" arr & 1:" , arr & 1)

NOTE : arr+= 1, etc . for in-place

array OP array works element-by-element and creates a new array
arrl np . arange(S)
arr2 = 2 ** arrl # makes a new array

print (arrl,
print (arrl,

"+" ,
... ti ,

arr2,
arr2,

"="
II H = ,

arrl + arr2, end=vsep)
arrl * arr2)

Elementwise vs. matrix multiplications
NumPy arrays and matrices are related, but slightly different types.

a, b = np . arange(8) . reshape(2, 4), np . arange(10 , 18) . reshape(2, 4)
print ("a")
print (a)
print ("b")
print (b, end=vsep)
print ("Elementwise multiplication: a * b")
print (a * b, end=vsep)
print ("Dot product: np.dot(a.T, b)")
print (np .dot(a .T, b), end=vsep)
print ("Dot product as an array method: a.T.dot(b)")
print (a .T. dot(b), end=vsep)

amat, bmat = np .matrix(a), np .matrix(b)
print ("amat, bmat = np.matrix(a), np.matrix(b)")
print ('a mat')
print(amat)
print (' bmat')
print (bmat, end=vsep)
print ("Dot product of matrices: amat.T * bmat")
print (amat .T * bmat, end=vsep)
print ("Dot product in Python 3.5+: a.T@ b")
print (amat .T @ bmat)

Doc ID: 6689695

Some Additional NumPy Subpackages
• np. fft - Fast Fourier transforms

• np. polynomial - Orthogonal polynomials, spline fitting

• np. linalg - Linear algebra

• cholesky, det, eig, eigvals, inv, lstsq, norm, qr, svd

• op.math - C standard library math functions

• np. random - Random number generation

• beta, gamma, geometric, hypergeometric, lognormal, normal, poisson, uniform, weibull

• many others, if you need it, NumPy probably has it.

FFT
PI = np . pi
t = np . linspace(0, 120 , 4000)
nrr = np . random . random

signal = 12 * np . sin(3 * 2* PI*t) # 3 Hz

signal += 6 * np . sin(8 * 2* PI*t) # 8 Hz

signal += 1.5 * nrr(len (t)) # noise

General FFT calculati on
FFT = abs (np .fft . fft(signal))
freqs = np .fft . fftfreq(signal . size, t[l] - t[0))
plt . plot(t, signal); plt . xlim(0, 4); plt . show()
plt . plot(freqs, FFT);

For one-dimensional real inputs we can discard the negative frequencies
FFT = abs (np .fft . rfft(signal))
freqs = np .fft . rfftfreq(signal . size, t[l] - t[0))
plt . plot(freqs, FFT); plt . xlim(-0.2 , 10);

Testing speedup of discarding negative frequencies

%%timeit
FFT abs (np .fft . fft(signal))
freqs = np .fft . fftfreq(signal . size, t[l] - t[0])

%%timeit
FFT abs (np .fft . rfft(signal))
freqs = np .fft . rfftfreq(signal . size, t[l] - t[0])

SciPy - Library of scientific algorithms for Python
The SciPy framework builds on top of the low-level NumPy framework for multidimensional arrays, and provides a large number of higher-level scientific algorithms. Some of the topics
that SciPy covers are:

Doc ID: 6689695
• Special functions (fil.iP-Y~~)

• Integration ~Ry~g~)

• Optimization (fil.iQY...Q~)

• Interpolation (,fil;iRY.-inter~)

• Fourier Transforms (~Qy.J!tpack)

• Signal Processing ~RY~glli!l.)

• Linear Algebra ~Ry.Jin.alg)

• Sparse Eigenvalue Problems (filjr;iy~~)

• Statistics {,fil;jQy~)
• Multi-dimensional image processing (~Qy.llQ!I!ls!ge)

• File 10 (,fil;ir;iy.JQ)

Each of these submodules provides a number of functions and classes that can be used to solve problems in their respective topics.

To access the SciPy package in a Python program, we start by importing everything from the scipy module ... or only import the subpackages we need ...

Fourier transform
Fourier transforms are one of the universal tools in computational physics; they appear over and over again in different contexts. SciPy provides functions for accessing the
classic FFTPACK library from Netlib, an efficient and well tested FFT library written in FORTRAN. The SciPy API has a few additional convenience functions, but overall the API is
closely related to the original FORTRAN library.

To use the fftpack module in a python program, include it using:

import scipy.fftpack as spfft

General FFT calculation
FFT = abs (spfft . fft(signal))
freqs = spfft . fftfreq(s i gnal . size, t [l] - t[0])
plt . plot(t , signal) ; plt . xli m(0, 4) ; plt . show()
plt . plot (freqs, FFT) ;

NumPy FFT vs. SciPy FFT vs. FFTW vs. MKLFFT
Which FFT library should you use?
If you want to use the MKL, you must use NumPy.
The default installations of NumPy and SciPy use FFTPACK
FFTW is faster than FFTPACK, and often faster than MKL

Installing PyFFTW

1. Install FFTW

• apt-get install libfftw3-3 libfftw3-dev

• yum install fftw-devel

1. pip install pyfftw

Doc ID: 6689695

Interpolation
Interpolation is simple and convenient in SciPy: The interpld function, when given arrays describing X and Y data, returns an object that behaves like a function that can be called for
an arbitrary value of x (in the range covered by X). It returns the corresponding interpolated y value:

import scipy . interpolate as spinter

def f (x):
return np . sin(x)

n np . arange(0, 10)
x = np . linspace(0, 9, 100)

y_meas
y_real

f(n) + 0.1 * np . random . randn(len (n)) # simulate measurement with noise
f(x)

linear_interpolation = spinter . interpld(n, y_meas)
y_interpl = linear_interpolation(x)

cubic_interpolation = spinter . interpld(n, y_meas, kind='cubic')
y_interp2 = cubic_interpolation(x)

fig, ax = plt . subplots(figsize=(l0 , 4))
ax . plot(n, y_meas, 'bs' , label='noisy data')
ax . plot(x, y_real, 'k' , lw=2 , label='true function')
ax . plot(x, y_interpl , 'r' , label='linear interp')
ax . plot (x, y_interp2, 'g' , label= ' cubic interp')
ax . legend(loc=3);

Doc ID: 6689695

COMP3321 (U) Python Visualization (b) (3)- P . L . 86 - 36
0

Updated over 1 year ago by ... l -----... , in COM.P 332;
3 13 631 246

1Mi·M441

(U) This notebook gives an overview of three visualization methods within Python, matplotlib, seaborn, and bokeh.

Recommendations

Python Visualization
This notebook will give a basic overview of some tools to visualize data. Much of this material is developed by Continuum Analytics, based on a
tutorial created by Wesley Emeneker.

First, install necessary packages:

Run this if on LABBENCH
import ipydeps

packages = [' matplotlib ' , ' seaborn ' , ' bokeh ' , ' pandas ' , ' numpy ' , ' scipy ' ,
' holoviews ' J

ipydeps . pip(packages)

import numpy as np
import pandas as pd

Visualization Choices
There are many different visualization chioces within Python . In this notebook we will look at three main options:

• Matplotlib

Doc ID: 6689695
• Seaborn

• Bokeh

Each of these options are built with slightly different purposes in mind, so choose the option which best suits your needs!

Matplotlib
Matplotlib is an excellent 2D and 3D graphics library for generating scientific figures. Some of the many advantages of this library include:

• Easy to get started

• Support for LaTeX formatted labels and texts

• Great control of every element in a figure, including figure size and DPI.

• High-quality output in many formats, including PNG, PDF, SVG, EPS, and PGF.

• GUI for interactively exploring figures and support for headless generation of figure files (useful for batch jobs).

Matplotlib is well suited for generating figures for scientific publications because all aspects of the figure can be controlled programmatically. This is
important for reproducibility, and convenient when one needs to regenerate the figure with updated data or change its appearance.

More information at the MPtplotlib web p_gge.

To get started using Matplotlib in a Python program, import the matplotlib.pyplot module under the name pit:

import matplotlib.pyplot as plt
This line configures matplotlib to show figures embedded
in the notebook, instead of opening a new window for each
#figure.More about that later. If you are using an old
version of IPython, try using '¾pylab inline' instead.
%matplotlib inline

The matplotlib MATLAB-like API
A great way to get started with plotting using matplotlib is to use the MATLAB-like API provided by matplotlib. It is designed to be compatible with
MATLAB's plotting functions, so if you are familiar with MATLAB, start here.

x = np . linspace(0, 5, 100)
y = X ** 2

print (x[0 :10])
print (y[0 :10])

Doc ID: 6689695

plt . figure()
plt . plot(x, y, 'g')
plt .xlabel('x')
plt .ylabel('y')
plt . title('title')
plt . show()

plt . subplot(l , 2, 1)
plt . plot(x, y, 'r--')
plt . subplot(l , 2, 2)
plt . plot(y, x, 'g*-');

The matplotlib object-oriented API
The main idea with object-oriented programming is to have objects to which one can apply functions and actions, and no object or program states
should be global (such as the MATLAB-like API). The real advantage of this approach becomes apparent when more than one figure is created, or
when a figure contains more than one subplot.

To use the object-oriented API , we start out very much like in the previous example, but instead of creating a new global figure instance, we store a
reference to the newly created figure instance in the fig variable, and from it we create a new axis instance axes using the add_axes method in
the Figure class instance fig :

fig = plt . figure()

graph = fig . add_axes([0, 0, 1, 0.3]) # left, bottom, width, height (range B to 1)

graph . plot(x, y, 'r')

graph . set_xlabel('x')
graph . set_ylabel('y')
graph . set_title('title');

Although a bit more code is involved , the advantage is that we now have full control of where the plot axes are placed, and we can easily add more
than one axis to the figure:

Doc ID: 6689695

fig = plt . figure()

graphl = fig . add_axes([0.1 , 0.1 , 0.8 , 0.8]) # main axes
graph2 = fig . add_axes([0.2 , 0.5 , 0.4 , 0.3]) # inset axes

main figure
graphl . plot(x, y, ' r')
graphl . set_xlabel(' x ')
graphl . set_ylabel('y')
graphl . set_title('Title\n ')

insert
graph2 . plot(y, x, ' g ')
graph2 . set_xlabel(' y')
graph2 . set_ylabel(' x ')
graph2 . set_title('Inset Title ');

Plotting categorical data
Note: this works in m~tplotlib 2.0.0; in version 2.1, you can enter the categorical data directly on many of the matplotlib plotting methods.

Doc ID: 6689695

initialize our data here, turning this into a List of names and a List of counts
data ={ 'apples' : 10, 'oranges' : 15, 'lemons' : 5, 'limes' : 20}
names = list (data . keys())
values = list (data . values())

first have to create numeric values to cover the axis with the categorical data
N = len (names)
ind = np . arange(N)
width = 0.35

this will make three separate plots to demonstrate
fig, axs = plt . subplots(l , 3, figsize=(15, 3), sharey=True)
axs[0] . bar(ind + width, values)
axs[l] . scatter(ind + width , values)
axs[2] . plot(ind + width, values)

here we'll space out the tick marks appropriately and replace the numbers with the names
for the Labels
for ax in axs :

ax . set_xticks(ind + width)
ax . set_xticklabels (names)

fig .suptitle("Categorical Plotting")
plt . show(fig)

In Matplotlib 2.1 +, we can do this directly

Doc ID: 6689695

from bokeh.sampledata.autompg import autompg as df

fig = plt . figure()

graph = fig . add_axes([0.1 , 0.1 , 2.0, 0.8])

num_vehicles = 8

graph .bar(
df['name' J.value_counts() . index[:num_vehicles],
df['name' J.value_counts() . values[: num_vehicles]

graph .set_title('Number of vehicles')
graph . set_xlabel('Vehicle name')
graph . set_ylabel('Count')

plt . show()

To save a figure to a file, we can use the savefig method in the Figure class:

fig .savefig("filename.png")

The real power of Matplotlib comes with plating of numerical data, and so we will wait to delve into Matplotlib further until we talk more about
mathematics in Python.

seaborn - statistical data visualization
Seaborn is a Python visualization library based on matplotlib . It provides a high-level interface for drawing attractive statistical graphics.

The homepage for the Seaborn project on the internet is here.

import seaborn as sns
import pandas as pd
sns . set ()

Doc ID: 6689695

fig = plt . figure()

graphl = fig . add_axes([0.1 , 0.1 , 0.8 , 0.8]) # main axes
graph2 = fig . add_axes([0.2 , 0.5 , 0.4 , 0.3]) # inset axes

main figure
graphl . plot(x, y, 'r')
graphl . set_xlabel('x')
graphl . set_ylabel('y')
graphl . set_title('Title\n')

insert
graph2 . plot(y, x, 'g')
graph2 . set_xlabel('y')
graph2 . set_ylabel('x')
graph2 . set_title('Inset Title');

More examples!

import random
df = pd .DataFrame()
df['x'] = random . sample(range (l , 100), 25)
df['y'] = random . sample(range (l , 100), 25)
df . head()

Scatterplot
sns . lmplot('x' , 'y' ,data=df,fit_reg=False);

Density Plot
sns .kdeplot(df . y);

Contour plots
sns .kdeplot(df . y, df .x);

Doc ID: 6689695

Distribution plots
sns .distplot(df . x);

Histogram
plt .hist(df . x,alpha=.3)
sns . rugplot(df . x);

Heatmaps
sns . heatmap((df . y, df . x], annot=True , fmt="d");

Bokeh
~ is a Python interactive visualization library whose goal is to provide elegant graphics in the style of D3.js while maintaining high-performance
interactivity over large or streaming datasets. Bokeh is designed to generate web-based interactive plots, and as such, it may not be able to provide
as fine a resolution as Matplotlib. The homepage for the Bokeh project on the internet is here.

There are multiple options for displaying Bokeh graphics. The two most common methods are output_file() and output_notebook() :

• The output_notebook() method works with show() to display the plot within a Jupyter notebook.

• The output_file() method works with save() to generate a static HTML file. The data is saved with the plot to the HTML file.

In this notebook, we will focus on output_notebook() .

from bokeh.plotting import figure, output_notebook, show

from bokeh.resources import INLINE
output_notebook(resources=INLINE)

import holoviews as hv
hv . extension(' bokeh ')

First, we will make a Bokeh plot of a line . The line function takes a list of x and y coordinates as input.

Doc ID: 6689695

#setup some data
import numpy as np

x = np . linspace(0 , 4*np . pi, 100)
y = np . sin(x)

#plot a Line
plot = figure()
plot . line(x, y)

show(plot)

Styling and Appearance

The 'line' above is an example of an object called 'Glyph'. Glyphs are made of 'lines' and 'filled areas'. Style arguments can be passed to any glyph
as keywords. Some properties include:

• Line properties: line_color , line_alpha , line_width , and line_dash .

• Fill properties: fill_color and fill_alpha .

Bokeh uses CSS Color Names.

Here is another example showing styling options:

Doc ID: 6689695

x = np . linspace(0, 4* np . pi, 100)
y = np . sin(x)

plot = figure(title="Sine Function")
plot . xaxis . axis_label='x'
plot . yaxis . axis_label='amplitude'

plot . line(x, y,
line_color='blue' ,
line_width=2 ,
legend=' sin(x)')

plot . circle(x, 2*y,
fill_color='red' ,
line_color=' black' ,
fill_alpha=0.2 ,
size=10 ,
legend='2sin(x)')

#Line_dash is an aribrary Length List of Lengths
#alternating in [color, blank, color, ...]
plot . line(x, np . sin(2*x),

line_color=' green' ,
line_dash=[10, 5, 2, 5],
line_width=2 ,
legend='sin(2x)')

show(plot)

Charts

Bar charts

The Bar high-level chart can produce bar charts in various styles. Bar charts are configured with a DataFrame data object, and a column to group.
This column will label the x-axis range. Each group is aggregated over the values column and bars are show for the totals:

Doc ID: 6689695

from bokeh.sampledata.autompg import autompg as autompg
autompg . head()

hp_by_cyl = autompg .groupby(' cyl' , as_index=False) . agg({ 'hp' : np .mean})
p = figure(title="Average HP by CYL" , plot_width=600, plot_height=400)
p. vbar(x=' cyl' , top='hp ' , width=0.5 , source=hp_by_cyl)
show(p)

Categorical Bar Chart

For a categorical bar chart, we still use p. vbar as above, but the top value will be the counts for the items in x . For the below example, we used
the ColumnDataSource class from bokeh. models to actually store the data, which we can then pass in p. vbar under the source keyword. We
also imported a color palette from bokeh. palettes to use as the color palette, passed in with the color keyword in our ColumnDatasource . (Note:
when using color palettes, you need to make sure there are enough colors in the palette to cover all the values in your data.)

from bokeh.models import ColumnDataSource
from bokeh.palettes import Spectral6

fruits [' Apples ' , 'Pears' , 'Nectarines ' , ' Plums' , 'Grapes ' , ' Strawberries']
counts [5, 3, 4, 2, 4, 6]

source = ColumnDataSource(data=dict (fruits=fruits, counts=counts,
color=Spectral6))

p = figure(x_range=fruits, y_range=(0, max (counts) +3), plot_height=250,
title="Fruit Counts ", toolbar_location=None , tools="")

p. vbar(x=' fruits ' , top=' counts ' , width=0.9 , color=' color ' ,
legend='fruits' , source=source)

p. xgrid . grid_line_color = None
p. legend .orientation = 'horizontal '
p. legend . location = 'top_center'

show(p)

Histograms

Doc ID: 6689695
Simple histogram using Holoviews

Using holoviews , we can easily create a histogram on top of Bokeh with the hv . Histogram function.

%%output size=150

%%opts Histogram (fill_color='#CD5C5C' , line_color='black')

hist = hv .Histogram(np . histogram(autompg['mpg'], bins=20), kdims =['mpg'], extents=(7, 0, 48 , 45))

hist

More complicated histogram using native Bokeh syntax

We can also use the quad method. In this example below, we're actually using the np.histogram function to create our histogram values, which
are then passed into the quad method to create the histogram.

import scipy.special
import numpy as np
from bokeh.layouts import gridplot

p = figure(title="Normal Distribution (mu=0, sigma=0.5)" , tools="save" ,
background_fill_color="#E8DDCB")

mu, sigma = 0, 0.5

measured = np . random . normal(mu, sigma, 1000)
hist, edges = np . histogram(measured, density=True , bins=50)

x = np . linspace(-2 , 2, 1000)

p. quad(top=hist, bottom=0, left=edges[: -1], right=edges[l :],
fill_color="#036564" , line_color="#033649")

p. xaxis . axis_label='x'
p.yaxis . axis_label='Pr(x) '

show(p)

Scatter plots

Doc ID: 6689695

%%output size=150

scatter = hv . Scatter(autompg . loc[:, ['mpg' , 'hp']])

scatter

Curves
%%output size=l50

accel_by_hp = autompg . groupby('hp' , as_ index=False) . agg({ 'accel' : np .mean})

%opts Curve [height=200, width=400, tools=['hover']]
%opts Curve (color='red' , line_width=l.5)

curve = hv .Curve(accel_by_hp)

curve

Spikes
%%output size=150

spikes = hv . Spikes(accel_by_hp)

spikes

Using layouts to combine plots
As simple as using + to add plots together

Doc ID: 6689695

%%output size=120

%%opts Curve [height=200, width=400, xaxis='bottom']
%%opts Curve (color='red ' , line_width=l.5)

%%opts Spikes [height=200, width=400 , yaxis='left']
%%opts Spikes (color='black' , line_width=0.8)

layout = curve + spikes

layout

A taste of advanced Bokeh features
Bokeh is loaded with wonderful features. Here are two final examples with no explanation. See thesenotebooks for additional Bokeh information.

from bokeh.sampledata.iris import flowers
flowers . head()

from bokeh.models import BoxZoomTool,ResetTool,HoverTool

##Adda new Series mapping the species to a color
colormap = { ' setosa' : 'red' , 'versicolor' : 'green' , 'virginica ' : ' blue ' }
flowers['color'] = flowers['species'] .map (lambda x: colormap[x])

tools = [BoxZoomTool(),ResetTool(),HoverTool()]

plot = figure(title = "Iris Morphology" , tools=tools)
plot . xaxis . axis_label ' Petal Length'
plot . yaxis . axis_label = ' Petal Width '

plot . circle(
flowers["petal_length"],
flowers ["petal_width"],
color=flowers["color"], #assign the color to each circle
fill_alpha=0.2 , size=10)

show(plot)

Doc ID: 6689695

x = np . linspace(0, 4*np . pi, 100)
y ;:: np . sin(x)

plot ;:: figure(tools =' reset,box_select,lasso_select,help')
plot . circle(x, y, color='blue ')
show(plot)

Doc ID: 6689695

Module: Pandas
0

.
Updated over 1 year ago by._l _____ 1 i~ COMP 3321

3 9 689 223

.

(U) This modules covers the Pandas package in Python, for working with dataframes;. •

Recommendations

Pandas Resource & Examples . ··
(Note: this was modified from the Pandamonium notebook by._l ____ fon nbGallery.)

.
•••••• ♦

(b) (3)-P . L . 86-36

This resource should help people who are new to Pandas and need to explore capabilities or learn the syntax. I'm going to provide a few examples
for each command I introduce. It's important to mention that these are not all the commands available!

If you prefer video tutorials, here's a Safari series =>
Data Analysis with Python and Pandas

Also note that Pandas documentions is available in DevDocs.

First we'll import and install all necessary modules.

import ipydeps
modules = [' pandas ' , ' xlrd ' , 'bokeh ' , ' numpy ' ,

' requests ' , ' requests_pki ' , ' openpyxl']
ipydeps . pip(modules)

"pd" is the standard abbreviation for pandas, and "np" for numpy

Doc ID: 6689695

import math
import pandas as pd
import numpy as np

#This is only included to give us a sample dataframe to work with
from bokeh.sampledata.autompg import autompg as df

Creating a DataFrame

The very basics of creating your own DataFrame. I don't find myself creating them from scratch often but I do create empty Data Frames like seen a
few times further down in the guide.

#Create Empty DataFrame Object
dfl = pd .DataFrame()

#This is the very basic method, create empty DataFrame but specify 4 columns and their names
#You can also specify datatypes, index, and many other advanced things here
dfl = pd . DataFrame(columns=(' Columnl ' , ' Column2 ' , ' Column3 ' , ' Column4 '))

#Create testing DataFrames (a, b, c), always useful for evaluating merge/join/concat/append operations.
a = pd .DataFrame([[l , 2, 3],[3, 4, 5]], columns=list (' ABC '))
b = pd . DataFrame([[S, 2, 3],[7, 4, 5]], columns=list (' BDE '))
c = pd .DataFrame([[ll , 12, 13],[17, 14, 15]], columns=list (' XVZ '))

a

b

C

Reading from and Writing To Files

Super easy in Pandas

csv
Let's write our autompg dataframe out to csv first so we have one to work this. Note: if you leave the index parameter set to True , you'll get an
extra column called "Unnamed: O" in your CSV.

Doc ID: 6689695

df . to_csv("autompg.csv" , index=False)

Now reading it in is super easy.

dfl = pd . read_csv("autompg.csv")
dfl . head ()

If the file contains special encoding (if it's not english for example) you can look up the encoding you need for your language or text and include that
when you read the file .

dfl = pd . read_csv(' autompg.csv ' , encoding = 'utf-8-sig')

You can also specify which columns you'd like to read in (if you'd prefer a subset).

df2 = pd . read_csv(' autompg.csv ' , usecols=['name ' , 'mpg'])
df2 . head()

If your file is not a csv, and uses alternative seperators, you can specify that when you read it in. Your file does not need to have a ".csv" extension
to be read by this function , but should be a text file that represents data.

For Example, if you have a .tsv, or tab-delimited file you can specify that to pandas when reading the file in .

dfl .to_csv("autompg.tsv" , index=False, sep='\t ')
dfl = pd . read_csv('autompg.tsv ' , sep='\t ')
dfl . head()

Chunking on Large CSVs

Often times, when working with very large CSVs you will run into errors. There are a few methods to work around these errors outside of a Help
Desk ticket for more memory.

If you don't have enough memory to directly open an entire CSV, as when they start going above S00MB-1 GB+, you can sometimes alleviate the
problem by chunking the in-read (opening them in smaller pieces).

Note: your numeric index will be reset each time.

Doc ID: 6689695

first we'll create a Large DataFrame for an example
large_df = pd .DataFrame()
for i in range (100):

ignore_index prevents the index from being reset with each DataFrame added
large_df = large_df . append(dfl, ignore_index=True)

large_df . to_csv("large_file.csv" , index=False)

#chunk becomes the temporary dataframe containing the data of that chunk size
for chunk in pd . read_csv('large_file.csv' , chunksize=1000):

print (chunk . head(l))

Another chunking variation

If you still need to load a very large CSV into memory for deduplication or other processing reasons, there are ways to do it. This method uses a
temporary DataFrame for appending , which gets dumped into a master DataFrame after 200 chunks have been processed. Clearing the temporary
DataFrame every 200 chunks reduces memory overhead and improves speed during the append process.

You can improve efficiency by adjusting chunksize and the interval that it dumps data into the master DataFrame. There may be more efficient ways
to do this, but this is effective. At the end of the cell , we have a DataFrame dfl which has all the data that we couldn't read all at once.

Notes: I use i gnore_index in order to have unique index values, since append will automatically preserve index values.

Doc ID: 6689695

dfl = pd .DataFrame()
df2 = pd . DataFrame()

for counter, chunk in enumerate (pd . read_csv('large_file.csv' , chunksize=1000)):
#Every 200 chunks, append df2 to df1, clear memory, start an empty df2
if (counter % 200) == 0 :

df2 = df2 . append(chunk, ignore_index=True)
dfl = dfl . append(df2, ignore_index=True)
df2 = pd . DataFrame()

else :
df2 = df2 . append(chunk, ignore_index=True)

#Anything Leftover gets appended to master dataframe (df1)
dfl = dfl . append(df2, ignore_index=True)

#remove the temporary DataFrame
del df2

print ("There are{} rows in this DataFrame." .format (len (dfl)))

dfl . head()

Excel

Use ExcelWriter to write a DataFrame or multiple DataFrames to an Excel workbook.

df2 = pd . DataFrame([{ 'Name' : 'Po' , 'Occupation' : 'Dragon Warrior' },
{ 'Name' : 'Shifu' , 'Occupation' : 'Sensei' }])

this just initializes the workbook
writer = pd . ExcelWriter("test_workbook.xlsx")
write as many DataFrames as sheets as you want
dfl.to_excel(writer, "Sheetl")
df2 .to_excel(writer, "Sheet2")
writer . save() # .save() finishes the operation and saves the workbook

When reading from an Excel workbook, Pandas assumes you want just the first sheet of the workbook by default.

dfl = pd . read_excel('test_workbook.xlsx')
dfl . head()

Doc ID: 6689695
To read a specific sheet, simply include the name of the sheet in the read command.

dfl = pd . read_excel('test_workbook.xlsx' , sheet_name='Sheet2')
dfl . head()

Loading from JSON/API

This is just a very simple example to show that it's very easy for JSON or API payloads to be converted to a DataFrame, as long as the payload has
a structured format that can be interpreted.

Pandas can write a DataFrame to a JSON file, and also read in from a JSON file.

df . to_json("json_file.json")

from_json = pd . read_json("json_file.json")

from_json . head()

The same can be done for JSON objects instead of files.

json_object = df . to_json() # don't specify a file and it will create a JSON object

from_json = pd . read_json(json_object)

from_json . head()

DataFrame Information Summaries

Now that your data is imported, we can get down to business.

To retrieve basic infromation about your DataFrame, like the shape (column and row numbers), index values (row identifiers), DataFrame info
(attributes of the object), and the count (number of values in the columns).

df . shape

df . index

df . info()

df . count()

Doc ID: 6689695

Describe DataFrame

Summary Statistics - DataFrame.describe() will try to process numeric columns by running : (count, mean, standard deviation (std), min, 25%, 50%,
75%, max) output will be that summary.

df .describe()

Checking Head and Foot of DataFrame

Note: You can use this on most operations (especially in this guide) to get a small preview of the output instead of the entire DataFrame.

#Show first 5 rows of DataFrame
df . head()

#Specify the number of rows to preview
df . head(10)

#Show Last 5 rows of DataFrame
df . tail()

#Or Specify
df .tail(10)

Checking DataTypes

It's important to know how your DataFrame will treat the data contained in specific columns, and how it will read in the columns. Pandas will attempt
to automatically parse numbers as int or float, and can be asked to parse dates as datetime objects. Understanding where it succeeded and where
an explicit parse statement will be needed is important, the dataframe can provide this information.

Note: Pandas automatically uses numpy objects.

#View column names and their associated datatype
df .dtypes

#Select columns where the datatype is float64 using numpy (a decimal number)
df . select_dtypes([np .float64])

#Select columns where the datatype is a numpy object (Like a string)
df . select_dtypes([np .object])

Doc ID: 6689695

#Change the data type of a column
df2 = df . copy()
df2['mpg'] = df2['mpg'] . astype(str)
df2['mpg'] . unique()

Modifying DataFrames
Modifications only work on assignment or when using inplace=True , which instructs the oataFrame to make the change without reassignment.
See examples below.

Change by assignment

df2 = df .drop('cyl' ,axis=l)
df2 .head()

Change in place

df2 .drop('hp' ,axi s=l , inplace=True) #i.nplace
df2 .head()

View and Rename Columns
Check all column names or Rename specific columns

#Check Column Names
df . columns

#Store column names as a List
x = list (df . columns)

Batch renaming columns requires a dictionary of the old values mapped to the new ones.

df2 = df . rename(columns={ 'mpg' : 'miles_per_gallon' ,
'cyl' : 'cylinders' })

df2 . head ()

Create New Columns
Similar to a dictionary, if a column doesn't exist, this will automatically create it

Doc ID: 6689695

#Will populate entire column with value specified
df2 = df . copy()
df2[' year ' J = ' 2017 '
df2 . head()

Accessing Index and Columns
Access a specific column by name or row by index

Change the column placeholders below to actually see working

Columns Available in Practice DataFrame: (mpg, cyl , displ, hp, weight, accel, yr, origin, name)

#By Column
df[' name ' J . head()

#Alternatively and equivalent to above, this won ' t work if there are spaces in the column name
df . name . head()

#By Numeric Index, below is specifying 2nd and 3rd rows of values
df . iloc[2 :4)

#By Index+ Column
df . loc [[1], [' name '])

Remove Duplicates
Important operation for reducing a DataFrame!

Change the column placeholders below to actually see working

Columns Available in Practice DataFrame: (mpg, cyl , displ , hp, weight, accel, yr, origin , name)

len (df)

Doc ID: 6689695

#first Let's create some duplicates
df2 = df . append(df, i gnore_index=True)
print ("There are{} rows in the DataFrame." .format (len (df2)))

#Remove any rows which contain duplicates of another row
df2 .drop_duplicates(inplace=True)
print ("There are now{} rows in the DataFrame." . format (len (df2)))

#or specify columns to reduce the number of ceLLs in a row that must match to be dropped
df2 = df2 . drop_duplicates(subset=['mpg'])
print ("There are now{} rows in the DataFrame. " . format (len (df2)))

Filtering on Columns
Filter a DataFrame based on specific column & value parameters. In the example below, we are creating a new DataFrame (df2) from our filter
specifications against the sample DataFrame (df).

#Created new dataframe where 'cyL' value== 6
df2 = df . loc[df['cyl'] == 6]
df2 . head()

use reset_index to re-number the index values
df2 = df . loc[df['cyl'] == 6] . reset_index(drop=True)
df2 .head()

not that we don't need .Loe for these operations
df2 = df[df['mpg'] >= 16] . reset_index(drop=True)
df2 .head()

Fill or Drop the NaN or null Values
Repair Empty Values or 'NaN' across DataFrame or Columns

Change the column placeholders below to actually see working

Columns Available in Practice DataFrame: (mpg, cyl , displ , hp, weight, accel, yr, origin , name)

Note: df. dropna & df. fillna are modifications and will modify the sample DataFrame. Remove "inplace=True" from entries to prevent
modification

Doc ID: 6689695

df . re index@

first we'll add some empty values
df3 = pd . DataFrame([{ 'name' : 'Ford Taurus' }, { 'mpg' : 18.0}])
df2 = df . append(df3, ignore_index=True)

#Check for NaN values
df2 . loc[df2['name'] . isnull()]

#True/False Output on if columns contain null values
df2 . isnull() . any ()

#Sum of all missing values by column
df2 . isnull() . sum ()

#Sum of all missing values across all columns
df2 . isnull() . sum() . sum ()

#Locate all missing values
df2 . loc[df2 . isnull() .T.any ()]

#Fill NaN values
df2 .fillna(0) . tail()

#Drop NaN values
df2 .dropna() .tail()

#Alternatively target a column
df2['cyl'] . fillna(0) . tail()

#Drop row only if all columns are NaN
df2 .dropna(how='all') . tail()

#Drop if a specific number of columns are NaN
df2 .dropna(thresh=2) .tail()

#Drop if specific columns are NaN
df2 .dropna(subset=['displ' , 'hp']) . tail()

Simple Operations

Doc ID: 6689695

#ALL Unique values in column
df['mpg'] . unique()

#Count of Unique Values in column
df[' cyl '] .value_counts()

#Count of all entries in column
df['hp '] . count()

#sum of all column values
df['hp'] . sum ()

#mean of all column values
df['cyl'] . mean()

#median of all column values
df['cyl'] . med i an()

#min (Lowest numeric value) of all column values
df['cyl '] .min ()

#max (highest numeric value) of all column values
df[' cyl'] .max ()

#Standard Deviation of all column values
df['cyl'] . std()

Sorting Columns

Note: These are just the very basic sort operations. There are many other advanced methods (multi-column sort, index sort, etc) that include
multiple arguments.

#Sort dataframe by column values
df . sort_values ('mpg' , ascending=False) . head()

#Multi-Column Sort
df . sort _values(['mpg' , 'displ']) . head()

Merging DataFrames

Doc ID: 6689695
While many of these are similar, there are specifics and numerous arguments that can be used in conjunction that truly customize the type of
DataFrame joining/merging/appending/concating you're trying to accomplish.

Note: I've provided more sample DataFrames (a, b, c) to help illustrate the various methods. Join/Merge act similar to SQL joins. This Wjki~
ent[Y. might help but it can take some time to learn and get comfortable with using them all.

#example df' s
a = pd . DataFrame([[l , 2, 3],[3, 4, 5]], columns=list (' ABC'))
b = pd .DataFrame([[S, 2, 3],[7, 4, 5]] , columns=list ('BDE '))
c = pd .DataFrame([[ll, 12, 13],[17, 14, 15]], columns=list ('XYZ'))
print (a)
print (b)
print (c)

Append DataFrames

Merges 2+ DataFrames, Does not care if dissimilar or similar. Can also use a list of DataFrames.

ab = a .append(b)
ab

Concatenate DataFrames

Simlar to append, but handles large lists of dataframes well.

abc = pd . concat([a,b,c])
abc

Join DataFrames

SQL-ish join operations (Inner/Outer etc), can specify join on index, similar columns may require specification

joined_df = a . join(b,how=' left ' ,lsuffix="_a ", rsuffix="_b")
joined_df

Merge DataFrames

Merges 2+ DataFrames with overlapping columns, Very similar to join .

Doc ID: 6689695

merged_df = a . merge(b, left_on='B ' , right_on='D')
merged_df

Iterate DataFrame

Iterating is only good for small dataframes, larger dataframes generally require apply/map and functions for efficiency

You will inevitably use these methods at one point or another.

lter Rows

Access to values is done by index
rows(O] = Index

rows[1] = values as pandas series (similar to a diet)

rows[1][0] = First column value of row, can specify column rows[1]['Column']

counter = 0
for row in df . iterrows() :

counter += 1
if counter > 15 :

break
print (row[l] . keys()[0])
print (row[l]['name '])
print (row[0], row[1][0])

lterTuples

Faster and more effecient, access to values is slightly different from iterrows (Index is not nested).
rowtuples(O] = Index

rowtuples[1] = First column value

rowtuples[2] = Second column value

Doc ID: 6689695

counter = 0
for rowtuples in df . itertuples():

counter += 1
if counter > 15 :

break
print (rowtuples(l],rowtuples(2],rowtuples[3])

Pivoting on DataFrame

Create Excel style pivot tables based on specified criteria

#Basic Pivot
df . pivot_table(index=['mpg' , 'name']) . head()

#Specify for a more complex pivot table
df . pivot_table(values=['weight'], index=['cyl' , 'name'], aggfunc=np . mean) . head()

Boolean Indexing

Filter DataFrame on Multiple Columns and Values using Boolean index

Note: The'&' in this example represents 'and' which might cause confusion. The explanation for this can also be a bit confusing , at least it caught
me off guard the first few times. The'&' will create a boolean array (of True/False which is used by the filtering operation to construct the output.
When all 3 statements below return true for a row, pandas knows that we want that row in our output. The 'and' comparator functions differently than
'&' and will throw a 'the truth value for the array is ambiguous' exception.

df . loc[(df['cyl '] < 6) &

(df('mpg'] > 35)] . head()

the same thing can be done with . query, for a more SQL-esque way to do it
just beware that you can run into issues with string formatting when using this method
df .query("cyl < 6 & mpg> 35") . head()

Crosstab Viewing

Contingency table (also known as a cross tabulation or crosstab) is a type of table in a matrix format that displays the (multivariate) frequency
distribution of the variables

Doc ID: 6689695

pd . crosstab(df[' cyl ' J,df[' yr ' J,margins=True)

Example using multiple options
Note: This is an example using a combination of techniques seen above. I've also introduced a new method .nlargest

#Top Number of Column1 Unique Values based on the Mean of NumColumn Unique Values using .nlargest
df . cyl . value_counts() . nlargest(math . ceil(df . mpg .value_counts() . mean())) . head

Create a New Column with simple logic
Useful technique for simple operations

#Using .astype(str) I can treat the float64 df['mpg'] column as a string and merge it with other strings
df2 = df . copy()
df2[' mpg_str ' J = df2['name '] + ' Has MPG ' + df2[' mpg '] . astype(str)
df2 . head()

Functions on DataFrames
The fastest and most effecient method of running calculations against an entire dataframe. This will become your new method of 'iterating' over the
data and doing analytics.

axis= 0 means function will be applied to each column

axis = 1 means function will be applied to each row

Note: This is a step into more advanced techniques. Map/Apply/Applymap are the most efficient Pandas method of iterating and running functions
across a DataFrame.

Map

Map applys a function to each element in a series, very like iterating .

def concon (x) :
return 'Adding this String to all values : ' +str (x)

df[' name '] .map (concon) . head()

Doc ID: 6689695
Apply

Apply runs a function against the axis specified.
We are creating hp_and_mpg based on results of adding
We are creating a New_Column based on the results of summing Column1 + Column2

df2('hp_and_mpg '] = df2[('hp ' , ' mpg ']] .apply (sum,axis=l)
df2 . loc[:, [' hp ' , ' mpg ' , ' hp_and_mpg ' , ' name ']] . head()

ApplyMap

Runs a function against each element in a dataframe (each 'cell')

df . applymap(concon) . head()

More Function Examples
def num_missing (x):

return sum (x . isnull())

#Check how many missing values in each column
df .apply (num_missing, axis=0)

#Check how many missing values in each row
df .apply (num_missing, axis=l) . head()

Python 3 and Map
Note: Similar to zip, map can return an object (instead of a value) depending on how it's configured. For both zip and map, you can use list() to get
the values.

def Examplel (stuff):
return stuff + ' THINGS '

#Try this without List, obverse the NewColumn values which are returned as objects
df2 = df . copy()
df2[' NewColumn '] = map (Examplel, df2[' name '])
df2 . head()

Doc ID: 6689695

#Now try with a List, problem solved when using this syntax

df2 = df . copy()
df2['NewColumn'] = list (map (Examplel, df2['name']))
df2 . head()

Advanced Multi-Column Functions
Note: This is a technique to modify or create multiple columns based on a function that outputs multiple values in a tuple. I've written this to work
directly with the sample DataFrame imported at the beginning of this resource guide.

Example2 outputs a tuple of (x, y, z) which we unpack from map using * and then zip inline.

def Example2 (one, two, three):
x = str (one)+ ' Text ' +str (two) +' Text ' +str (three)
y = sum ([one, two, three])
z = ' Poptarts '
return x, y, z

df2 = df . copy()

df2['StrColumn'], df2['SumColumn'], df2['PopColumn'] = zip (*map (
Example2, df2['mpg '] , df2['cyl'], df2['hp']))

df2 . head()

Conditionally Updating Values
Use . loc to update values where a certain condition has been met. This is analogous to SET •• • WHERE ... syntax in SQL.

df2 = df . copy()
df2[' efficiency '] = ""
in SQL, "UPDATE <tablename> SET efficiency = 'poor' WHERE mpg < 10"

df2 .loc[(df2 . mpg < 10), ' efficiency '] = "poor"
df2 .loc[(df2 . mpg >= 10) & (df2 . mpg < 30), ' efficiency '] = "medium"
df2 . loc[(df2 .mpg >= 30), ' efficiency '] = "high "
df2 . tail()

GroupBy and Aggregate

Doc ID: 6689695
Pandas makes it pretty simply to group your dataframe on a value or values, and then aggregate the other results. It's a little less flexible than SQL
in some ways, but still pretty powerful. There's a lot you can do in Pandas with GroupBy objects, so definitely check the documentation.

setting as_index to False will keep the grouped values as
regular columns values rather than indices
grouped_df = df .groupby(by=['cyl'])

use .agg to aggregate the values and run specified functions
note that we can't create new columns here
aggregated = grouped_df . agg({

'mpg' : np . mean,
' displ' : np . mean,
'hp' : np . mean,
' yr ' : np .max ,
'accel' : 'mean'

})
aggregated . head()

Doc ID: 6689695

COMP3321 - A bit about geos
0

. . . .
Created almost 3 years ago by .. l -------t'I i~ COM P 3321

3 249 72

.
.

(U) This notebook gives an overview of some basic geolocation functionality within Python.

'

Recommendations

(U) A bit about geos
(U) This notebook touches some of the random Python geolocation functionality.

Run this if on LABBENCH
NOTE: geopandas REQUIRES running 'apk add geos gdaL-dev'
from a terminal window.
import ipydeps

packages = [' geopy ' , ' geopandas ' , 'bokeh ']
for i in packages:

ipydeps . pip(i)

(U) Measuring Distance

(b) (3)-P . L . 86-36

(U) Geopy can calculate geodesic distance between two points using the Vincenty distance or great-circle distance formulas, with a default of
Vincenty available as the class geopy. distance. distance , and the computed distance available as attributes (e.g., miles , meters , etc.).

from geopy.distance import vincenty
fort_meade_md = (39.10211545, -76.7460704220387)
aurora_co = (39.729432 , -104.8319196)
print (vi ncenty(fort_meade_md, aurora_co) . miles, "Miles ")

Doc ID: 6689695

from geopy.distance import great_circle
harrogate_uk = (53.9921491 , -1.5391039)
aurora_co = (39.729432 , -104.8319196)
print (great_circle(harrogate_uk, aurora_co) . kilometers, "Kilometers")

(U) Getting crazy with Bokeh and Maps!
(U) This information comes from mgreat notebook.

(U) We can add map tiles to Bokeh plots to better show geolocation information! We will use some generic lat/Ion data, found here

import pandas as pd
us_cities = pd . Data Frame() . from_csv(' us_ci t i es . csv ' ,index_col =None)
us_ci ties . head()

(U) Define the WMTS Tile Source

(UHFOUO) Adding the tile source is as easy as defining the WMTS Tile Source, and adding the tile to the the map. Note: you need your lntelink
VPN spun up to connect to this server.

from bokeh.models import WMTSTileSource, TMSTileSource

(U) You also need to convert the lat and Ion to plot correctly on the mercator projection map:

I P . L . 86 - 36

Doc ID: 6689695

import math

###METHODS FOR LAT/LONG TICK FORMATTING

def projDegToRad (deg):
return (deg / 180.0 * math . pi)

def lat_lon_convert (n,lat_or_lon,isDeg=True):
sm_a 6378137.0
sm_b = 6356752.314

n = float (n)
lon0 = 0.0
if isDeg:

n = projDegToRad(n)

if lat_or_lon == 'latitude' :
return sm_a * math . log((math . sin(n) +1.0)/ math . cos(n))

elif lat_or_lon ~= 'longitude' :
return sm_a*(n - lon0)

us_cities['merc_x']
us_cities['merc_y']

(U) Finally, plot the data!

list (map (lambda x: lat_lon_convert(x, 'longitude'),us_cities . lng))
= list (map (lambda x: lat_lon_convert(x, 'latitude'),us_cities . lat))

from bokeh.plotting import output_notebook, show
from bokeh.charts import Scatter
from bokeh.resources import INLINE
output_notebook(resources=INLINE)
p = Scatter(us_cities, x='merc_x' , y='merc_y' , title="Positions of US Cities")
p. add_tile(NGA_MAP) #vpn is necessary
show(p)

(U) GeoPandas

(U) GeoPandas is a project to add support for geographic data to pandas objects. It currently implements GeoSeries and GeoDataFrame types
which are subclasses of pandas. Series and pandas. DataFrame respectively. GeoPandas objects can act on shapely geometry objects and
perform geometric operations.

Doc ID: 6689695
(U) GeoPandas geometry operations are cartesian. The coordinate reference system (crs) can be stored as an attribute on an object, and is
automatically set when loading from a file. Objects may be transformed to new coordinate systems with the to_crs() method. There is currently no
enforcement of like coordinates for operations, but that may change in the future.

from geopandas import GeoDataFrame
from matplotlib import pyplot as plt
from shapely.geometry.polygon import Polygon
from descartes import PolygonPatch
poly = Polygon([(l , 1),(1, 2),(1.5 , 3),(7, 7),(5, 4),(2, 3)])
BLUE = '#6699cc '
fig = plt . figure()
ax = fig . gca()
ax . add_patch(PolygonPatch(poly, fc =BLUE, alpha=0.5 , zorder=2))
ax . axis(' scaled')
plt . show()

Doc ID: 6689695

Module: My First Web Application
0

• • • • • • • • • ■ • • • • • • •

Updated 11 months ago by .. l ---~I in COMP 3321
3 1 247 62

ml l§itM,i

(U) Module: My First Web Application

■ • • • • • • • • • • •

Recommendations

(U) A Word On Decorators

(b) (3)-P . L . 86 - 36

(U) We've learned that functions can accept functions as parameters, and functions can return functions. Python has a bit of special notation, called
decorators, that handles the situation where you want to add extra functionality to many different functions. It's more likely that you will need
to use and understand decorators than it is that you would need to write one, but you should still understand the basics of what's going on.

(U) Suppose there are a several functions, all returning strings, that you want to "sign," i.e. append your name to.

def doubler (to_print) :
return to_print*2

def tripler (to_pri nt):
return to_print*3

doubler("Hello l\n")

(U) We an define a function that accepts this function and wraps it up with the functionality that we want:

def signer (f) :
def wrapper (to_print):

return f(to_print) + ' \ n--Mark'
return wrapper

Doc ID: 6689695
(U) To reiterate : the argument to signer is a function, and the return value of signer is also a function. It is a function that takes the same
arguments as the argument f passed into signer , and inside wrapper , f is called on those arguments. That is why something like this works:

signed_doubler = signer(doubler)

signed_tripler signer(tripler)

signed_doubler("Hello! \n ")

signed_tripler("Hellol \n ")

(U) If we are willing to replace the original function entirely, we can use the decorator syntax:

@signer
def quadrupler (to_print) :

return to_print*4

quadrupler("Hello! \n")

(U) Things get more complicated from there ; in particular

• A function can have attributes. Therefore, a decorator can instrument a function by attaching local variables and doing something to them.

• A decorator that takes arguments must generate and return a valid decorator-style function using those arguments.

• A decorator may wrap functions of unknown signature by using (*args , **kwargs) .

(U) All of this is useful when working with a complicated , multi-layer system, where much of the work would appear to be repetitive boiler plate. It's
best to make the "business logic" (i.e. whatever makes this program unique) as clean and concise as possible by separating it from the scaffolding.

(U) The Flask Framework
(U) Flask is a "micro-framework", which means that it handles mostly just the web serving-receiving and parsing HTTP requests , and sending back
properly formatted responses. In contrast, a macro-framework, e.g. Django, includes its own ORM for database operations, has an integrated
framework for users and authentication, and an easy-to-configure administrative backend. Because it offers so much, it takes a long time to get

86 - 36 started wi .. th-DJ-·a_n_g_o_. ___ • ~
1

P . L .

(VENV) a I~]$ pip instalJ .fJ.as.k ••••••••••• ,I' ,I' ,I' ------

(VENV) ~ 1 ..:1 $ • pyth~~ ..

import ipydeps
ipydeps . pip('flask')

Doc ID: 6689695

from flask import Flask

app = Flask(_name_)

@app . route('/')
def hello () :

return "Hello World"

app . run(host ='0.0.0.0' ,port=8999) # open ports:8000-9000

(U) Press <Ctrl-e> to stop your app.

(U) View Functions

(U) A view function is anything for which a route has been determined, using the @app. route decorator. It can return a variety of types-we've
already seen a string, but it can also return a rendered template or a flask. Response , which we might use if we want to set custom headers.

from flask import request, make_response, redirect, url_for

fruit = { 'apple' : 'red' , 'banana' : 'yellow' ,
'cranberry' : 'crimson' , 'date' : 'brown' }

@app . route('/fruits/')
def fruit_list () :

fruit_str = "
" . join(["A {} is {}" . format (*i) for i in fruit . items()])
form_str = '""'
Add something:

<form method="post">
<input type="text" name="fruit_name"></input>
<input type="text" name="fruit_color"></input>

header_str = """<html><head><title>TEST</title></head><body>"""
footer _str = "'"' </body></html> """
return header_str + fruit_str + form_str + footer_str

Doc ID: 6689695

@app . route('/fruits/<name>/')
def single_fruit (name):

if name in fruit . keys():
return "A{} is {}" . format (name,fruit[name])

else :
return make_response("ERROR : FRUIT NOT FOUND" , 404)

@app . route(' /fruits /' ,methods=['POST ' ,])
def add_fruit ():

print (request . form)
print (request . data)
fruit[request . form['fruit_name']] = request .form['fruit_color ']
return redirect(url_for(' fruit_list '))

app . run(host =' 0.0.0.0' ,port=8999)

(U) Templates

(U) Flask view functions should probably return HTML, JSON, or some other structured data format. As a general rule, it's a bad idea to build these
responses as strings, which is what we've done in the simple example. Flask provides the Jinja2 template engine, which allows you to store the
core of the responses in separate files and render content dynamically when the view is called. Another nice feature of Jinja2 templates is
inheritance, which can help you create and maintain a consistent look and feel across a Flask website.

(U) For a simple Flask app, templates should be located in a directory called templates alongside the application module. When operating
interactively, the templates folder must be defined explicitly:

import OS

templates = os . path . join(os . getcwd(), ' templates')

app = Flask(_name_ ,template_folder =templates)

(U) A Jinja2 template can have variables, filters, blocks, macros, and expressions, but cannot usually evaluate arbitrary code, so it isn't a full­
fledged programming language. It is expected that only small parts of the template will be rendered with dynamic content, so there is a custom
syntax optimized for this mode of creation. Variables are surrounded with double curly braces: { { ' { { variable } } ' } } , and are typically injected
as keyword arguments when the render _template function is called. Attributes of objects and dictionaries can be accessed in the normal way.
Blocks, conditionals, for loops, and other expressions are enclosed in a curly brace and percent sign, e.g { { '{% if condition %} ••• {% else
%} ... {% endif %} ' }} .

Doc ID: 6689695

from flask import render_template

@app . route(' /fruits/')
def fruit_list ():

return render_template(' fruit_list.html ' ,fruits=fruit)

@app . route(' /fruits/<name>/ ')
def single_fruit (name):

if name in fruit . keys() :
return render_template('single_fruit.html' ,name=name,color=fruit[name])

else :
return make_response("ERROR: FRUIT NOT FOUND" , 404)

app . run(host=' 0.0.0 .0 ' ,port=8999)

(U) In this example, we also see how template inheritance can be used to isolate common elements and boilerplate. The templates used are:

• base.html

<html>
<head>

<title>Fruit Stand</title>
</head>
<body>

{% block body%}
{% endblock %}

</body>
</html>

• fruit_list.html

Doc ID: 6689695

{% extends "base.html"%}
{% block body%}
<h1>Fruit Stand</h1>
<p>Available fruit:</p>

{% for fruit in fruits.items()%}
{{ fruit[0] }} ({{ fruit[1]
{% endfor %}

<p>Add a new fruit:</p>
<form method="post">

}})

<label for="fruit_name">Name</label> <input type="text" name="fruit_name"></input>

<label for="fruit_color">Color</label> <input type="text" name="fruit_color"></input>

<input type="submit" value="submit" />

</form>

{% endblock %}

• single_fruit.html

{% extends "base.html"%}
{% block body%}

<p>A {{name}} is {{ color }}.</p>
{% endblock %}

(U) Moving To Production
(U) In the real world , app.run() probably won't get the job done, because

• It isn't designed for performance,

• It doesn't handle HTTPS or PKI gracefully,

• It doesn't handle more than one request at a time.

(U) However, Flask makes our app conform to the WSGI standard, so it interoperates very easily with Python web-server containers,
including uWSGI and gunicorn.

(U) A high performance stack for a production web application is:

• nginx: a fast, lightweight front-end server proxy that can receive HTTPS requests and pass them to gunicorn, taking care to add PKI
authentication headers.

• supervisord: Process manager to make sure your app never dies.

Doc ID: 6689695
• gunicorn: serves your flask app on a (closed , internal) port

• flask: framework in which you write an app

• your app: takes care of all the business logic

• database: SQLite if you don't need much, MySQL or Postgres if necessary.

(U) Another option is to use Apache with mod_wsgi instead of nginx, supervisord, and gunicorn.

Doc ID: 6689695

Module: Network Communication Over HTTP{S)
and Sockets I (b) (3)-P . L. 86- 36

0 • • • • • • • • • . • ••• ...
Updated over 2 years ago by .. , ----~I in COMP 3321

3 336 71

Ell l½iiM,i

(U) Module: Network Communication Over HTTP(S) and Sockets

Recommendations

(U) HTTP with requests
(U) There are complicated ways of interacting with the network using built-in libraries, such as urllib, urllib2, and httplib. We'll forgo those in favor
of the requests library. This is included with Anaconda, but generally not with with other python interpreters. So for this notebook, you'll want to
execute it on an Anaconda jupyter-notebook, not in labbench. In general , you can pip install it on other python implementations.

$ pip install requests

import requests

One of the few things not yet requiring a certificate . .
resp = requests . get (::::::::::::::::::::::::::;)

print (resp . status_code)
print (len (resp . content))
print (len (resp . text))

bytes vs. unicode
resp . content == resp . text

I p . L . 86 - 36

r •

Doc ID: 6689695

resp . content

resp . ur l

resp . ck

resp . headers

(U) Other HTTP methods, including put , delete , and head are also supported by requests

(U) Setting up PKI

(U) Convert P12 certificate to PEM
(UlfFOUO) The requests module needs your digital signature certificate to be in PEM format. This section assumes you're starting with a P12
formatted certificate , which is what you commonly start with. If you can't find your P12 cert, you may be able to export it from your browser. If you
use CSPid , other instructions may apply. We'll also do this in python below, so you don't have to do this now.

1. (U) Windows Start > type 'cyr::iwin' > run Cyr::iwin Terminal
2. (UHFOUO) Run cd /cygdrive/u/private/Certificates (or whatever directory holds your .p12)
3. _(U) Run openssl pkcs12 - clcerts -in <your DS cert>.p12 -out <your DS cert>.pem

• (U) Enter your existing certificate password

• (U) Enter a new pass phrase. It's generally a good idea to re-use the .p12 password.

• (U) Confirm the new pass phrase.

(UHFOUO) Get the CA trust chain
(UffFOUO) To interact with sites over HTTPS, Python will need to know which certificate authorities to trust. To tell it that, you will need the following
file.

1. (UHFOUO) Visit the PKI certificate authorities Rag~ (or "go pki" > click on "CA Chains" under "Server Administrators")
2. (UHFOUO) Scroll down to "Apache Certification Authority Bundles" at the bottom and click to expand "All Trusted Partners Apache Bundles"
3. (UHFOUO) Right click on "AIITrustedPartners.crt" and save it into the directory holding your .p12 certificate

(U) HTTPS and PKI with requests
(U) To use PKI , you need the proper Certificate Authority_ and PEM-encoded PKI key~. We'll use a requests. Session object so that we only have
to load these once ..

Doc ID: 6689695

Challenge: find a better algorithym than DES that dump_privatekey accepts
from OpenSSL import crypto
p12 = crypto . load_pkcs12(open ("sid_DS.p12" , "rb") . read(), b"Your PKI password")
certfile = open ("sid_DS.pem" , "wb")
certfile . write(crypto . dump_privatekey(crypto . FILETYPE_PEM, p12 . get_privatekey(), 'DES' , b"mypkipassword"))
certfile . write(crypto . dump_certificate(crypto . FILETYPE_PEM, pl2 .get_certificate()))
certfile . close()

import requests

ses = requests . Session()

ses .verify = 'Apache_Bundle_AllTrustedPartners.crt'

Will take the certificate, or a tuple of the certificate and password or at Least it used to
but the current version seems to not want to take a password string
this avoids us getting prompted for the password
ses .cert = ' sid_DS. pem' #, b"mypkipassword",

resp = ses . get('https://home.web.nsa.ic.gov/')

At this point you need to click over to the terminal running your notebook and respond to the

Enter PEM pass phrase :

prompt. You should only get one prompt per Session().

resp . headers

resp = ses .get('https://nbgallery.nsa.ic.gov/')
resp . headers

(U) It's also easy to POST data to a web service with requests:

resp = ses . get(--------------------------index 1 = resp . text . find('method="post"')
index2 = resp . text . find('</form> ' ,indexl)
print (resp . text[indexl -64 :index2+7])

J P . L . 86 - 36

Doc ID: 6689695

payload {"Name" : "I I• ~--~~,-~······························~-----
"sid" : "I I'• f ························•I P.L. 86- 36 "Organization" : "I r----""""""-.,(~·..:.·..:·~•:J~ , -
"others" : "I f • • • · · · · ·
"message" : "Just play:1-n,g . w.:i. ti' ytflcin J·e~~ni; said it was OK)" .
"sendto" : "11'.
"subject" :~) Testing" . "redirect" : "" •
"classification" : "UNCLASSIFIED//FOR OFFICIAL USE ONLY"}

resp = ses . post("https ://sit eworks .web.nsa.ic . gov/main/ emailForm/" . data=payload)

print (resp . text [resp . text . find("Your form"):])

(U) In this exmaple, ses. cert could also be a list or tuple containing (certfile. keyfile) , and keyfile can be a password-less PEM file or a
PEM file and password string tuple, so you aren't prompted for your password every time.

(U) Low-level socket connections with socket
(U) Communication over a socket requires a server (which listens) and a client (which connects) to the server, so we'll need to open up two
interactive interpreters. Both the server and the client can send and receive data. The server must

1. Bind to an IP address and port,
2. Announce that it is accepting connections,
3. Listen for connections.
4. Accept a connection.
5. Communicate on the established connection.

We'll run the server (immediately below) in the notebook and the
client (below) in a separate python window on the system where we're running
our jupyter-notebook.

#THIS IS THE SERVER

import socket

sock_server = socket . socket(socket .AF_INET. socket . SOCK_STREAM) # IPv4, TCP

HOST = '127.0 . 0.1'

PORT = 50505 # USE YOUR OWN!

Doc ID: 6689695

sock_server . bind((HOST, PORT))

sock_server . listen(l)

sock_conn, meta = sock_server . accept()

sock_conn . send(b"Hello, welcome to the server")

sock_conn . recv(4096)

(U) The client must

1. Connect to an existing (IP address, port) tuple where a server is listening.
2. Communicate on the established connection.

So for our purposes, we'll run the following in a separate python window

#THIS IS THE CLIENT
import socket
sock_client = socket . socket(socket . AF_INET, socket . SOCK_STREAM)
HOST, PORT = ' 127.0.0.1' , 50505 # must match a known server
sock_client . connect((HOST, PORT))
sock_client . recv(512)
sock_client . send(b"Thank you. I am the client")

(U) Buffering, etc. are taken care of for you, mostly.

(U) Topics for Future Consideration:
• SOAP with SOAPpy and/or SUDS

• Using modules from the Standard Library

• XML-RPC

• Parsing HTML with BeautifulSoup

Doc ID: 6689695

(U)

HTTPS and PKI Concepts
0 _____ ..,,.

Updated over 3 years ago byl
3 2 575 66 ------

...

lm•Mfifl · -- ~ 114-MM◄ IM§M11 ml
(U) Overview of HTTPS and PKI concepts.

Recommendations

HTTPS and PKI Concepts

.

PKI is confusing, especially given the mix of internal and external uses, but there are some core concepts.

Public Key Infrastructure (PKI)

I (b) (3)-P.L. 86 - 36 __ ,.____ __

Each PKI certificate has two parts, the private key and the public key. The public key is simply an encrypted form of the private key. It is important to
keep the private key secret at all costs. A compromized private key would allow someone else to pretend to be the original owner.

Establishing Trust
When you go to amazon.com, your browser receives their server certificate. But how do you know you can trust it?

Certificate Authorities (CA's)
Buried in your browser is a long list of known certificate authorities, such as Verisign. The amazon .com server certificate has been digitally signed
by one of these CA's. We know it's coming from amazon.com because only amazon can generate the corresponding public key, and only the
corresponding private key can decrypt traffic sent to the public key. In other words, because your computer knows the public key is signed by
a known CA, and your computer is sending data to that public key, only amazon can decrypt it because they have the correspond ing private key.

Doc ID: 6689695

PKI in the IC
The IC, including NSA, has its own certificate authorities (CA's). Furthermore, both the users and the servers have certificates (generally only
servers have certificates on the outside). These certificates are signed by the IC CA's, which are visible
at httQs://Rki . web. nsa. ic.gov/Qages/certificateAuthorities.shtml

Digital Signature (OS) Certificate
90% of the time, you're using your digital signature certificate . This certificate verifies that you are you to the various services you access on
NSAnet. You also use your OS certificate for Secure Shell (SSH) to access systems like MACHINESHOP, LABBENCH, and OpenShift.

Key Encryption (KE) Certificate
On the rare occasion that you encrypt an e-mail , you use your KE certificate. Your browser doesn't actually need this certificate.

Key Formats

PKCS12
NSA keys come in PKCS12 (.p12) format. It contains both the public and private key. With Python, you need the OpenSSL package to use PKCS12
ce rtifi cat es.

PEM
PEM format is by far the most widely supported format on the outside. Many languages and framworks only support PEM, not PKCS12. However,
you can convert your key from PKCS12 to PEM format using the openssl command.

To further complicate matters, many languages and frameworks only support unencrypted PEM certificates. You can unencrypt your PEM or
PKCS12 certificate with the openssl command , but this is generally a no-no since it would allow anyone to masquerade as you.

PPK
PPK format is only used by PuTTY, the SSH tool for Windows. You can convert your key from PKCS12 to PPK format with the P12_to_PPK
Converter tool.

Doc ID: 6689695

PKI with Python

pypki2
Examples at hll~gjtlab.coi.nsa.ic,goyLpY.thon[pY.pkj2/blob/master/README.md

By Hand with ssl Package

SSL is the Secure Sockets Layer, which implements HTTPS (Hyper Text Transfer Protocol Secure)

Python 2.7.9+
from getpass import getpass
from urllib2 import build_opener, HTTPCookieProcessor, HTTPError, HTTPSHandler, Request
import ssl

pemPasswd = getpasswd('Enter your PKI password: ')
context = ssl . SSLContext(ssl . PROTOCOL_SSLv23)
context . load_cert_chain(pemCertFile, keyfile=pemKeyFile, password=pemPasswd)
context . load_verify_locations(cafile=pemCAFile)
opener = build_opener(HTTPCookieProcessor(), HTTPSHandler(context=context))
req = Request('https://wikipedia.nsa.ic.gov/en/Colossally_abundant_number')
resp = opener .open (req)
print (resp . read())

Python 3.4+

Doc ID: 6689695

from getpass import getpass
from urllib.request import build_opener, HTTPCookieProcessor, HTTPSHandler, Request
import ssl

pemPasswd = getpasswd('Enter your PKI password: ')
context = ssl .SSLContext(ssl . PROTOCOL_SSLv23)
context . load_cert_chain(pemCertFile, keyfile=pemKeyFile, password=pemPasswd)
context . load_verify_locations(cafile=pemCAFile)
opener = build_opener(HTTPCookieProcessor(), HTTPSHandler(context=context))
req = Request('https://wikipedia.nsa.ic.gov/en/Colossally_abundant_number')
resp = opener .open (req)
print (str (resp . read(), encoding=' utf-8 ')) # read() returns bytes type, which has to be converted to str type

External Packages

OpenSSL

Handles PKCS12 and many other key formats, but not part of the standard library. It is included with Anaconda/Jupyter.

Requests

Supports only unencrypted PEM format. Takes care of a lot of little things for you like HTTP redirects. More on HTTP Status Codes
at htt12s://wiki12edia.nsa.ic.gov/en/List of HTTP status codes

Doc ID: 6689695

Python, HTTPS, and LABBENCH
0 ------~····

Updated 3 months ago byl I in COMP 3321
3 10 478 163

...
(b) (3) - P.L . 86-36 1

(UIIFOUO) This notebook demonstrates how to interact with web resources over HTTPS when using LABBENCH. It primarily
uses the requests_pki module.

Recommendations

UNCLASSIFIED//FOR OFFICIAL USE ONLY

(UHFOUO) Python, HTTPS, and LABBENCH
(UffFOUO) This notebook demonstrates how to interact with web resources over HTTPS when using LABBENCH. It uses
the requests_pki and rest_api modules.

(U) HTTP with requests_pki
(U) There are complicated ways of interacting with the network using built-in libraries, such as urllib, urllib2, and httplib. For basic (unsecured)
interaction, we can use requests. However, with Secure The Net, almost everything is now PKl-enabled.

(U) Luckily, there is a module for that! LABBENCH has native support for requests_pki, which makes it an ideal library for us.

(I]pi p3 i nsta l l requests

Doc ID: 6689695

import ipydeps

modules = ['requests-pki' , 'pypac']

ipydeps . pip(modules)

(U) Example 1: Obligatory example of requests
import requests
One of the few things not yet requiring a certificate for Secure The Net.
resp = requests .get('http : //airs.s2.org.nsa . ic.gov/')

print ("Response code: {}" . format (resp . status_code))
print ("Length of content : {}" .format (len (resp . content)))
print ("Length of text: {}" . format (len (resp . text)))

(U) That's interesting. Are content and text the same?

resp . content == resp . text

(U) It turns out that content stores the bytes of the response and text stores the unicode of the response. Let's look at the text:

print (resp . text)

(U) That's great if we want the raw HTML. .. which in many cases we may. However, we can render the HTML response natively within Jupyter!

from !Python.display import display, HTML
display(HTML(resp . text))

(U) Notice that we didn't get any of the images that go along with this webpage, but for our purposes now this is sufficient.

(U) requests_pki
(UHFOUO) LABBENCH has made interacting with secure webpages trivial! That's because the requests_pki module works seamlessly with
LABBENCH to pass your PKI with your request. Let's see how easy it is!

(U) Example 2: nbGallery

Doc ID: 6689695

import requests_pki
sess = requests_pki . Session()

resp = sess . get('https://nbgallery .nsa.ic.gov/')

resp . headers

display(HTML(resp . text))

(U) So maybe Jupyter isn't meant to be a full-fledged web-browser after al l. ..

(U) Example 3: Notebook Gallery search

(U) Search the Notebook Gallery for a term, get the results back as JSON, and parse the JSON. This adds a new headers argument to the GET
request.

(UHFOUO) Normally a web server will respond with some default type of output. That may be application/html , application/xml , or something
else. If you don't like that, you can try persuading the server to give you something else using an Accept header. That will tell the server your
preferred response format (i.e. the format you prefer to accept). Servers often support multiple formats, but not all of them.

import json

search_term = 'beautifulsoup'
url = "https://nbgallery.nsa.ic.gov/notebooks"
params = { ' q ' : search_term, 'sort' : 'score' }
headers = { 'Accept' : 'application/json' }
resp = sess .get(url, params=params, headers=headers)

resp . url

print (resp .text)

json . Loads() will parse a JSON string into Lists and hashes
resp_parsed = json . loads(resp .text)

type (resp_parsed)

take a Look at it and find what you want
resp_parsed

Doc ID: 6689695

print the titles of all notebooks that matched your search term
[record['title'] for record in resp_parsed]

(U) Example 4: Using a proxy
I P.L . 86 - 36 1

.

(U) Sometimes you need a proxy set up, particularly when working with second party sites. requests_pki and pypac make this setup quite easy!

import pypac

proxy = 'http://www.web.nsa.ic.gov/proxy/ipsec.pac'
url = ' -----~~~-~---------------------------s es s = requests_pki .Session(pac=proxy)
params = { 'type' : 'Community' , 'activity_area'
respFromCSE = sess . get(url, params=params)

display(HTML(respFromCSE . text))

(U) Example 5: Post with JSON

'All' , 'project' 'All' , 'service' 'All' }

Sometimes you'll need to 'post' data rather than do a 'get' request. The 'post' works similar to the 'get', but you'll need to specify parameters for the
post and usually need to set the headers as well. This one posts the parameters as a JSON object; another common content type
is application/x-www-form-url-encoded , in which you'll need to use the urllib library to URL encode your parameters prior to posting them.

base_url = 'https://namingstuff-mestern.apps.oso4.platform.cloud.nsa.ic.gov/'

with this post, we're telling the host that we are sending json, and want to receive json
the post parameters are sent in the 'data' key, and must be json in this case
status_code = 0
tries = 0
while not status_code == 200 :

resp = sess . post(

)

base_url + 'GetRecord/languages/languages' ,
headers={ 'Accept' : 'application/json' , 'Content-Type' : 'application/json' },
data=json . dumps({ 'language' : { '$ne' : ' English' }})

status_code = resp . status_code
tries += 1
if tries > 3 :

break

Doc ID: 6689695

print (resp . status_code)
languages = json . loads(resp . text)
print (len (languages))
print (languages[0])

(U) rest_api
The rest_api library is another resource for accessing HTTPS pages on NSANet. Like requests_pk i , rest_api takes care of all the PKI
authentication for you, but this library is built to enable you to create what's called an 'API wrapper' , which means that we're wrapping our own class
around the API , which is designed to just make it easier to query the API and interpret the results. API , by the way, stands for Application
Programming Interface, and is basically a clearly defined set of methods for communication with a given service, or rules for interacting with data
housed in a web service.

In general if you want to hit a single web page, requests_pki is generally preferred because there's less overhead (you don't have to create a
whole class to do it). But if you want to hit multiple pages at a website or API , then r est_api is probably the better way to go.

(U) Example 6: rest_api with TESTFLIGHT

This example shows a simple class that inherits from rest_api .AbstractRestAPI , and allows us to hit a couple of pages (called 'endpoints') of the
TESTFLIGHT API. Notice we set host and headers as class variables. With these set, we don't have to define them every time we make a query
to a TESTFLIGHT page. For each page we just add the actual page or endpoint and the class fills in the rest of the URL.

ipydeps . pip('rest-api')
import rest_api

class Testflight (rest_api .AbstractRestAPI):
host = 'https://tf-www.testflight.proj.nsa.ic.gov '
headers = { 'Accept ' : ' application/json ' }

def sources (self) :
"Returns a list of all sources that feed Testflight"
endpoint = ' /SolanoService/rest/report/sources '
return self ._get(endpoint) . json()

def search (self , ** kwargs):
"Returns report summaries that match the given keyword arguments"
endpoint = ' /SolanoService/rest/report/search/'
return self ._post(endpoint, data=kwargs) . json()

Doc ID: 6689695

from pprint import pprint
tf = Testflight()
pprint(tf . sources()[: 3])

pprint(tf . search(originator=' NSA ' , fields ="subject serial nipf" , start=0 , rows=3 , sort='Newest'))

(U) Other resources
• (UHFOUO) Other notebooks on the Notebook Gallery that use requests (can you modify example 4 above to find them?)

• (UNFOUO) RY.Rki2 , an open source module for working with your P12 certificate that originated at NSA. It's not part of Anaconda and works
best in Jupyter on LABBENCH. It works with urllib. requests instead.

(U) One more comment. Be careful when you try to display the HTML from webpages ... some webpages may affect things more than you want...

resp = sess . get('https://home.web.nsa.ic.gov/')
display(HTML(resp .text))

UNCLASSIFIED//FOR 0FFICIAL USE 0NLY

Doc ID: 6689695

Module HTML Processing With BeautifulSoup
0 -----

...... • • • • • •. • .. • • • • • • • • •. • • • • • • • • • • J (b) (3)-P . L . 86 - 36 1
Updated 9 months ago byl ___ __.l

3 326 78

(U) BeautifulSoup module for COMP3321.

Recommendations

(U) BeautifulSoup is a Python module designed to help you easily
locate and pull information out of an HTML document (or string).

(U) A good deal of the time, maybe even the majority of the time, when
you have to get your data from the interwebs you will query a web service
that returns complete, well formatted responses (JSON, XML, etc).
However, sometimes you just have to deal with the fact that the data you
want can only be obtained by parsing a messy, probably automatically
generated, web page.

(U) There are several approaches to dealing with web page parsing, and
several Python packages that can help you. In this lesson we cover one
of the most common, BeautifulSoup.

Doc ID: 6689695

(UHFOUO) If you are running this via Jupyter on Anaconda, you can
import BeautifulSoup and use the rer ue_s,ts r odule to do the J I
example. If you want to perform the homepage ~xaniple on
Anaconda, you will need to export your ~1gnatur~ .PKTto PEM format (
instructions here) and use a module th~t ~upptirts HTTPS such as
urllib.request. I P . L . 86- 36 r • •
(UHFOUO) If you are running J"upyter on_ LABBENCH, execute the below
cell to install bs4 and rest_api_: ·

import ipydeps

modules = ['bs4' , 'rest_api']

ipydeps . pip(modules)

import rest_api

.
(U) Run this cell regardle~s of LABBENCH of A_naconda

. .
import requests •
from bs4 import BeautifulSoup :
from !Python.display import HTML, displaJ .

{et Let's grab the l------1[home12age and save the t~-~le on the page as
nice, parseable (is that a word?) text. Notice that we can do a simple
.get() from the requests module. This is because ther7homepage is
one of the very few plain HTTP sites left on the high ~

Doc ID: 6689695

We will try to connect and catch any exceptions in case things go awry
try :

resp = requests .get('I I': except : _____________ .._

print ("Well, that didn't work!")

I p . L . 86 - 36

#uncomment these Lines if you want to see some of the helpful attributes t he response object

print(resp.status_code)
print(Len(resp.content))
print(Len(resp.text))

#If we got this far then we have a response (we are . oing to assume the response isn't
"Access Denied") we take the response text an r eate a BeautifuLSoup object so we can
tiptoe through our data •

.
bsObj = BeautifulSoup(resp . text, "html.p ser")

#Also could have used bsObj.find
tables = bsObj . findAll ("table~•~• . .
#open our output file r writing
outfile = open (c:::1-table.txt' , 'w')

.
, this returns a List of all the <table>'s in the HTML

#Loop through our List of tables from the findALL("table") above and go through the table
one row (<tr>) and cell (<td>) at a time, outputting the information to the screen as csv
and to the output file in pipe('/') delimited formats.
for table in tables:

i = 0

for tr in table . findAll('tr'):
i += 1
j = 0

for td in tr . findAll('td'):
print ('{},' . format (td . text),end=' ')
outfile . write("element{}:{} I" . format (j, td . text))
j += 1

outfile . write('\n')
print ()

outfile . close()

Doc ID: 6689695

(U) Notice how we can display a hyperlink to our output - this might be
handy if you don't want to go to Jupyter Home to display the file.

display(HTML('display file' . format ("Q able.txt"))) .
.

(U) Now lets try something a little trickier. Let's plJJI down th
homeRage and redisplay the "Current Activities" buH~ted list_. 1n 1ne 1n our
notebook. ·

#We are going to use the rest_api module here. This is a NSA specific package and has
HTTPS support baked in. It makes pulling webpages using your PKis a snaP., . v
the package was really designed to access RESTful webse~~i • not ~eb pages.
urlString = ----------------
parameters = ' '
headers = { 'text/html' ,

'application/xhtml+xml' ,
'application/xml;q=0.9' ,
'*/*;q=0.8'

}
queryString = ""
#Create an api object for our host server
api = rest_api .AbstractRestAPI(host=urlString)

#Get the homepage from the server . If you wanted sub-pages off the server you would put
that path in the queryString as something like "/folder/page.html".
try :

resp = api ._get(queryString)
except :

print ("Well that didn't work!")

#Create our BeautifuLSoup object
bsObj = BeautifulSoup(resp . text, "html.parser")

...
I p . L .

1

8 6 - 3 6 I

Doc ID: 6689695

#Use the .find method to get the <body> of the HTML document. We will drill down to our
List from there .. find() only returns the first matching HTML tag, which is OK in this
case because you *should* only have one <body> tag in the document
body = bsObj . find('body')

(UHFOUO) Now for the sticky bit.

From the the Chrome brower Tools-> Developer Tools console (could have done this
in Firefox as well from Tools->Web Developer->Toggle Tools) I ascertained that the
path through the HTML to the bulleted list I care about is

section2 > div.item-container.item-container2.item-container-rss.item147067 > div.item-content.item-content2 >div> div

more succinctly, as xpath it is

//*[@id="section2"]/d iv[2]/div[1]/div/div/

but BeautifulSoup does not accept xpath (whomp, whomp). If you like to use xpath
the lxml module does a decent job of parsing HTML and does accept xpath syntax.

#Now I progress through the body object using the find_next method to get to the bulleted List
activities = body .find_next('div' ,{ 'id' : 'section2' }) . find_next('div ' ,{ 'class' : 'feedDisplay ' })

(U) Now we have the right element in the activities object. We can use
the str() method to get the raw HTML from the object and either print it
inline in the notebook or we can just print the text using the .text attribute.

print(activities)
display(HTML(activities ._ str_ ()))

An easier way: using 'select'

Doc ID: 6689695
In the 'Inspector' view in your Developer Tools, you can right-click on your desired tag and choose 'Copy Unique Selector' to copy the CSS selector
path for your tag. Then you can use soup. select or soup. select_one to navigate directly to that tag, rather than crawling through the entire
hierarchy to get to it. (Note: I ran this in Firefox, not sure what the right-click menu is like in Chrome)

selector = ".rssEntries > li:nth-child{l) > div:nth-child{3)"
at Least for our version of bs4, you have to replace
nth-child with nth-of-type
selector = selector . replace("nth-child" , "nth-of-type")
bsObj.select would find all tags with that path
bsObj . select_one(selector)

Doc ID: 6689695

Module: Operations with Compression and
Archives

0
...

----··· •••• ■ ••••
Updated about 2 years ago byl I in COMP 3321

3 70 8

ml iMitM,i

(U) Module: Operations with Compression and Archives

.

Recommendations

I (b) (3) -P . L . 86-36 1

Doc ID: 6689695

user_string =

name,username,city,state,zip_code,primary_workstation

json_string =

P . L . 86 - 36

[{"author" : "Jane Austen", "title" : "Pride and Prejudice"}, {"author" : "Fyodor Dostoevsky", "title": "Crime and Punishment"}, i

with open ('user_file.csv ' , ' w') as f:
f .write(user_string)

Doc ID: 6689695
with open ('user_file.json ' , ' w') as f:

f ~write(json_string)

zipfile
import zipfile

with zipfile .ZipFile('user_file.zip' , mode='w') as zf:
zf .write(' user_file.csv')

zf = zipfile .ZipFile('user_file.zip') # with a filename

zf2 = zipfile . ZipFile(open (' user_file.zip')) # with a file or file-Like object
zf2 == zf

zf . namelist()

zf2 . name list()

z = zf .filelist[0]
z

z . filename, z . file_size

[(z .filename, z . file_size) for z in zf .filelist]

zf .getinfo('user_file.csv')

user_file_csv = zf .open ('user_file.csv ' , 'r') # returns a file-Like object!

from csv import DictReader
user_data = [_ for _ in DictReader(user_file_csv)]
print (len (user_data))
user_data[0]

user_file_csv . read()

user_file_csv . close()

zf .extract(zf .filelist[0], 'zfextract ')

►

Doc ID: 6689695 .
gz1p

import gzip

with gzip .open ('user_file.csv.gz' , 'wt') as gf:
gf .write('This string will be stored as text')

gzip_users = gzip .open ('user_file.csv.gz') # takes a file name, returns a file-Like object!
x = gzip_users . readlines()
gzip_users . close()
x[: 3]

gzip_users = gzip .open ('user_file.csv.gz' , 'rt')
g_user_dicts = list (DictReader(gzip_users))
g_user_dicts[: 2]

with open ('user_file.csv.gz' , 'rb') as f:
still_gzipped = f . read()

still_gzipped[: 100]

from io import StringIO
unpacked_users = gzip .GzipFile(fileobj=io .StringIO(still_gzipped)) # what if you have bytes or a file - Like obejct to unpack?
unpacked_users . readlines()[: 3]

tarfile
import tarfile

with tarfile .open ('userfile.tar' , mode='w') as tf:
tf . add('user_file.csv')
tf . add('user_file.json')

tarfile . is_tarfile('userfile.tar'), tarfile . is_tarfile(' user_file.csv')

tf = tarfile .open ('userfile.tar') # don't need to unzip first !

tf . getmembers()

tf .getnames()

Doc ID: 6689695

u = tf .extractfile('user_file.csv')
u2 = tf .extractfile(tf . getmembers()[l])

u. read line()

u2 . read()[: 150]

tf .extractall('from_tarball')

Doc ID: 6689695

Module: Regular Expressions
0 ------..... ···

Updated 11 months ago byl I in COMP 3321
3 322 154

T

Ill IMlrH,i 1%HFfJI
(U) Module: Regular Expressions

Recommendations

(U) Regular Expressions (Regex)

(U) Now You've Got Two Problems ...

.
.....

I (b) (3) -P . L . 86-36 1

Some people, when confronted with a problem, think "I know, I'll use regular expressions." Now they have two
problems.
Jamie Zawinski , 1997

(U) A regular expression is a tool for finding and capturing patterns in text strings. It is very powerful and can be very complicated; the second
problem referred to in the quote is a commentary on how regular expressions are essentially a separate programming language. As a rule of thumb,
use the in operator or string methods like find or startswith if they are suitable for the task. When things get more complicated, use regular
expressions, but try to use them sparingly, like a seasoning . At times it may be tempting to write one giant, powerful , super regular expression. but
that is probably not the best thing to do.

(U) The power of regular expressions is found in the special characters. Some, like " and $, are roughly equivalent to string
methods startswith and endswith , while others are more flexibile , especially . and * , which allow flexible matching.

(U) Getting Stuff Done without Regex

Doc ID: 6689695

"mike" in "so many mikes!"

"mike" . startswith("mi")

"mike" .endswith("ke")

"mike" . find("k")

"mike" . isalpha()

"mike" . isdigit()

"mike" . replace("k" , "c")

(U) Regular expressions in Python
There are only a few common methods for using the re module, but they don't always do what you would first expect. Some functionality is exposed
through flags, which are actually constants (i.e. int defined for the re module), which means that they can be combined by addition.

import re

re . match("c" , "abcdef")

re . match("a" , "abcdef")

re . search("c" , "abcdef")

re . search("C" , "abcdef")

re . search("C" , "abcdef" , re . I) # re.IGNORECASE

re . search("Ac" , "ab\ncdef")

re . search("Ac" , "ab\ncdef" ,re . M) # re.MULTILINE

re . search("AC" , "ab\ncdef" , re .M + re . I)

(U) In both match and search , the regular expression precedes the string to search. The difference between the two functions is
that match works only at the beginning of the string, while search examines the whole string .

Doc ID: 6689695
(U) When repeatedly using the same regular expression , compiling it can speed up processing. After a compiled regular expression is
created, find , search , and other methods can be called on it, and given only the search string as a single argument.

c_re = re . compile ("c")

c_re . search("abcde")

Regex Operators

- matches a single character
A - matches beginning of a string or newline
$ - matches end of string
* - 0 or more of something
+ - 1 or more of something
? - 0 or 1 of something
*?, +?, ?? - don't be greedy (see example below)
{3} - match 3 of something
{2,4} - match 2 to 4 of something
\ - escape character
[lrnLRN] - match any ONE of the letters 1, r, n, L, R, N
[a-m] - match any ONE of letters from atom
[aim] - match letter a or m
\w - match a letter
\s - match a space
\d - match a digit

re . search("IS}.-i*s$" , "Mike likes cheese\nand Mike likes bees ")

re . findall("[S](IS}:l{3}[S})[S)s!S}:l{3}-IS}:l{4}" , "Hello, I am a very bad terrorist. If you wanted to know, my phone number is (303) 555-2

re . findall("mi.*ke" , "i am looking for mike and not all this stuff in between mike")

re . findall("mi.*?ke" , "i am looking for mike and not all this stuff in between mike")

Capture Groups
Put what you want to pull out of the strings in parentheses ()

►

Doc ID: 6689695

my_string = "python is the best language for doing 'pro'gramming"
result = re . findall ('"(IS}.,l+)" , my_string)
print (result)
print (result(0])

Matches and Groups
(U) The return value from a successful call of match or search is a match object; an unsuccessful call returns None . First, this is suitable for use
in if statements, such as if c_re. search("abcde"): For complicated regular expressions, the match object has all the details about the
substring that was matched, as well as any captured groups, i.e. regions surrounded by parentheses in the regular expression. These are available
via the group and groups methods. Group O is always the whole matching string, after which remaining groups (which can be nested) are ordered
according to the opening parenthesis.

m = re . match(r"(\w+) (\w+)" , "Isaac Newton, physicist")

m.group()

m. group(l)

m.group(2)

m. groups ()

Other Methods
(U) Other regular expression methods work through all matches in the string, although what is returned is not always straightforward , especially
when captured groups are involved. We demonstrate out some basic uses without captured groups. When doing more complicated things, please
remember: be careful, read the documentation, and do experiments to test!

re .f i ndall("a.c" , "abcadcaecafc") # returns List of strings

re . finditer("a.c" , "abcadcaecafc") # returns iterator of match objects

re . split("a." , "abcadcaecafc") # returns List of strings.

(U) The sub method returns a modified copy of the target string. The first argument is the regular expression to match, the second argument is
what to replace it with-which can be another string or a function , and the third argument is the string on which the substitutions are to be carried
out. If the sub method is passed a function, the function should take a single match object as an argument and return a string. For some cases, if

Doc.ID: 6689695
the substitution needs to reference captured groups from the regular expression, it can do so using the syntax \g<number> , which is the same as
accessing the groups method within a function.

re . sub("a.*?c" , "a--c• , "abracadabra")

re . sub("a(. *?)c" , "~<l>~<l>c" , "abracadabra")

def reverse_first_group (matchobj) :
match = matchobj .group()
rev_group = matchobj . group(l)[:: -1]
return match[:matchobj . start(l)] + rev_group + match[matchobj . end(l):]

r e . sub("a(.* ?)c " ,reverse_first_group, "abracadabra")

(U) In the above, we used start and end , which are methods on a match object that take a single numeric argument-the group number-and
return the starting and ending indices in the string of the captured group.

(U) One final warning: if a group can be captured more than once, for instance when its definition is followed by a + or a * , then only the last
occurrence of the group will be captured and stored.

Doc ID: 6689695

Hashes
Updated 6 months ago byl ____ ___,,I i~ COMP 3321

3 22 4

0

id·itti-Fifll

(U) Computing Hashes in Python

Recommendations

(U) Hashes
(U) Let's start with hashes. Hashes map data of arbitrary size to data of fixed size and have a variety of uses:

• securely storing passwords

• verifying file integrity

• efficiently determining if data is the same

.....
(b) (3) -P.L . 86 - 36

(U) There are many different hashing algorithms. You've probably heard of some of the more common ones, such as MD5, SHA 1, and SHA256.

(U) Hashes have some useful features:

• they are one-way, meaning that given a hash, there isn't a function to convert it back to the original data

• they map data to a fixed output, which is useful when comparing large amounts of data (such as files)

(U) So let's generate a hash.

from hashlib import sha256
sha256('abc' . encode('ascii')) . hexdigest()

(U) or

sha256(b ' abc ') . hexdigest()

Doc ID: 6689695
(U) We all know storing plaintext passwords is bad. A common technique of avoiding this is to store the hash of the password, then check if the
hashes match. So we can create a short function to check if the typed password matches the stored hash:

def check_password (clear_password, password_hash):
return sha256{clear_password) . hexdigest() == password_hash

(U) Does anyone know why storing the hash of a password is bad?

(U) If the password hash database was ever compromised , it would be vulnerable to a pre-computation attack (rainbow table), where an attacker
pre-computes hashes of common passwords. There are tools such as scrypt to help mitigate this vulnerability.

(U) How about a safer use of hashes? Suppose you need to look for duplicate files? Doing a byte-per-byte comparison of every file to every other
file would be really expensive. A better approach is to compute the hash of each file , then compare the hashes.

import os
from hashlib import mdS
def get_file_checksum (filename) :

h = mdS{)
chunk_size = 8198

with open{filename, 'rb') as f:
while True :

chunk = f . read(chunk_size)
if len (chunk) == 0:

break
h. update(chunk)

return h. hexdigest()

(U) There is a small danger with this approach: collisions. Since we're mapping a lot of data to a smaller amount of data, there is the possibility that
two files will map to the same hash. For SHA256, the chances that two files have the same hash are 1 in 2"256, or about 1 in 1.16e+ 77. So even
with a lot of files, the chance of a collision is small.

(U) Notice that we don't need to read in the entire file at once. One really cool feature of hashes is they can be updated:

h = sha256{b 'abc')
h. update{b 'def')
h. hexdigest ()

sha256{b 'abcdef') . hexdigest()

Doc ID: 6689695

Module: SQL and Python
0

. ____ __,,
Updated almost 2 years ago byl I in COMP 3321

3 1 359 163

...

mli iriiM,i

(U) Module: SQL and Python

Recommendations

.
.....

(U) The Odd Couple: Programming and Databases

(b) (3) - P . L . 86 - 36

(U) It makes a lot of sense to keep your data in a database, and programming logic in a program. Therefore, it's worth overcoming the fundamental
impedance mismatch between the two technologies. In the most common use cases, where the program isn't too terribly complicated and the data
isn't too crazily interconnected, things usually work just fine.

(U) Python has a recommended Database API , although there are slight variations in the way this API is implemented, which is one reason to use a
metalibrary like SQLAlchemy (we'll get to this later). The standard library only provides an implementation for SQLite, in the sqlite3 package.
Connections to other database types require external packages, such as MySQLdb (confusingly, to get this you have to pip install MySQL-

python).

obby drop tables

(U) Basics with sqlite3
To interact with a database, a program must

1. Establish a connection
2. Create a cursor
3. Execute commands

o Read the results

o Commit the changes

Doc ID: 6689695
4. Close the cursor and/or connection

(U) Using a basic adapter, commands are executed by passing strings containing SOL commands as arguments.

import sqli te3

conn = sqlite3 . connect('test.db') # SQLite specific : creates db if necessary

cur = conn . cursor()

cur .execute("""create table fruit (
id integer primary key,
name text not null,
color text default "RED"
) .. " ..

)

cur .execute(''' insert into fruit (name) values ("apple")''') # not there yet

conn . commit() # to make sure it's written

cur .execute(""" select* from fruit""") # returns the cursor--no need to capture it.

cur .fetchone()

(U) When making changes to the database, it's best to use parameter substitution instead of string subtitution to automatically protect against
unsanitized input. The sqlite3 module uses ? as its substitution placeholder, but this differs between database modules (which is a major headache
when writing code that might have to to connect to more than one type of database).

fruit data [('banana' , 'yellow'),
('cranberry' , 'crimson'),
('date' , 'brown'),
('eggplant' , 'purple'),
('fig' , 'orange'),
('grape' , 'purple')]

for f in fruit_data:
cur . execute("""insert into fruit (name, color) values(?,?)""" , f)

cur .execute("""select * from fruit'""') # DANGER! DATA HASN'T BEEN WRITTEN YET!

cur .fetchone()

Doc ID: 6689695

cur . fetchmany(3)

cur . fetch all()

(U) A cursor is iterable:

more_fruit = [('honeydew ' , 'green'),('ice cream bean' , ' brown'),('jujube ' , 'red')]

cur . executemany("" " insert into fruit (name, color) values (?,?)"" " ,more_fruit)

cur .execute("""select * from fruit"" ")

[item[l] for item in cur] # read the name

cur .execute('PRAGMA table_info(fruit) ')
for line in cur:

print (line)

cur . fetch all()

conn . commit() # always remember to commit!

(U) In sqlite3, many of the methods associated with a cursor have shortcuts at the level of a connection -behind the scenes, the module creates
a temporary cursor to perform the operations. We will not cover it because it isn't portable.

(U) Other Drivers

(U) The most common databases are MySQL and Postgres. Installing the packages to interact with them is often frustrating, because they have
non-Python dependencies. Even worse, the most current version of mysql - python in PYPI is broken, so we request a different version:

(VENV) a i ~]$ pip install mysql-python==l.2.3
()

l[=============."- . Ii • .• • ~ • • ' ., • • • • • • • • • • • • • • • • • VENV J t ..];p "P'11' '1nsot:21.1"1 •oo r- s'Cj} • • • • • • • • • • • • •· •· •· •· •· •· ,. ,. •· •· •· , _____ _

(VENV)[I ► -]$,pip, in-staU ,ps~tip,g2 • • • • • • • • • • • • • • • • ••••••••I P . L . 86 - 36

Error: pg_config executable not found.

(U) With enough exceptions to make life very frustrating, they work like sqli t e3 .

Doc ID: 6689695

(U) SQLAlchemy
(U) SOLAlchemy is a very powerful , very complicated package that provides abstraction layers over interaction with SOL databases. It includes all
kinds of useful features like connection pooling. We'll discuss two basic use cases; in both of which we just want to use it to get data in and out of
Python.

(U) Cross-Database SQL

(U) Imagine the following scenario: during development you'd like to use SOLite, even though your production database is MySOL. You don't plan
to do anything fancy; you already know the SOL statements you want to execute (although there are a couple of things you always
wished sqlite3 would do for you, like returning a diet instead of a tuple .

(U) Enter SOLAlchemy. It does require that you have a driver installed, e.g. MySQLdb, to actually talk to the database, but it takes care of all the
ticky-tack syntax details. By default, it even commits changes automatically! ·

import ipydeps
ipydeps . pip('sqlalchemy')

import sqlalchemy

engi ne = sqlalchemy . create_engine(' sqlite:///test . db') # database protocol and URL

result = engine . execute('select * from fruit')

ans = result . fetchall()

first_ans = ans[0]

type (first_ans)

first_ans[l]

first_ans . keys()

first_ans .va l ues()

engine . execute('''insert into fruit (name) values(?)''' ,('kumquat'))

engine . execute(' ''insert into fruit (name,color) values(?, ?)'' ' ,[('lime' , 'green'),('mango ' , 'green ')])

result = engine . execute('select * from fruit')

Doc ID: 6689695

result . fetchall()

(U) Now, to move to MySQL, all you have to do is use a different URL, which follows the pattern:
dialect+driver://username:password@host:port/database

The SQLAlchemy documentation lists all the databases and drivers.

(U) As Object Relational Mapper

(U) The real power in SQLALchemy is in using it to store and retrieve Python objects from a database without ever writing a single line of SQL. It
takes a little bit of what looks like voodoo at first. We'll skip most of the details for now, at the risk of this being a complete cargo cult activity. Open
up a new file called sql_fruit. py and put the following into it:

from sqlalchemy import create_engine, Column, Integer, String, Date
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

engine= create_engine('sqlite:///test.db')
Base = declarative_base()
Session= sessionmaker(bind=engine)
db_session = Session()

class Fruit(Base):
tablename 'fruit'

id= Column(Integer, primary_key=True)
name= Column(String)
color=Column(String, default="RED")

def _init_(self, name, color):
self.name= name
self.color= color

def _repr_(self):
return "<Fruit{}: {}, {}>".format(self.id, self.name, self.color)

(U) Now, in the interactive interpreter:

from sql_fruit import *

f _query = db_session . query(Fruit)

Doc ID: 6689695

f _query . all ()

f _query . first()

nectarine = Fruit(' nectarine ' , ' orangered ')

db_session . add(nectarine)

db_session . commit()

Doc ID: 6689695

Easy Databases with sqlite3
0

...
Created over 3 years ago by .. ,---~, i~ CO~~ ;321

3 1 199 57

.

(U) Example on using sqlite3 to group and average data instead of using dictionaries.

Recommendations

Easy Databases with sqlite3

(b) (3) -P . L . 86 - 3 6

The great thing about sqlite3 is that it allows you to create a simple, local database without having to install any servers or other tools. The entire
database is contained in a single file.

Here we're going to create a simple database that holds daily stock data. This is related to the Structured Data and Dates Exercise from

COMP3321 at b.tt~juQy.ter:gal!.e...ry .. platform.cloud.nsa.ic.goy/nb/884fbd2f/Structured-Data-and-Dates-Exercise

We'll use the same AAPL stock data from Yahoo Finance available at httRs://urn .nsa.ic.gov/t/Ogdi

First we import the packages for reading the CSV, parsing the dates, and working with sqlite3.

from csv import DictReader
from datetime import datetime
import sqlite3

Create the Table
Here we have a function that creates a stocks table in our database (referenced by db_conn). The columns are:

• symbol : Simply holds the stock ticker symbol so we can store records for more than just AAPL.
• year, month, day: We break the date out into three integer columns because it's easier to do queries against precise dates or groups/ranges

of dates. If the date were kept as a string , forming the query string would be much more difficult.

Doc ID: 6689695
• week: We calculate the week for each date so the data can be grouped by week.

• price: This corresponds to the Adj Close column from the CSV; the closing price for that symbol on that date.

When we're done forming our table, we need to commit the changes to the database.

def create_database {db_conn):
cur = db_conn . cursor()
cur . execute{ 'CREATE TABLE stocks (symbol text, year integer, month integer, day integer, week integer, price real}')
db_conn . commit()

Import the Data
This function imports data for a symbol from input_file using the database connection object db_conn. This is very similar to the Structred Data
exercise, except we do a SOL insert for each record . The question marks get associated with the values in the tuple (the second argument to
cursor.execute after the INSERT command string).

After we've iterated over all records for the inserts, we need to commit them to the database with db_conn.commit().

def import_data (symbol, input_file, db_conn) :
with open (input_file, 'r') as infile:

symbol symbol . strip() . upper()
reader = DictReader(infile)
cursor db_conn . cursor()

for record in reader:
dt = datetime . strptime(record['Date'], '%Y-%m-%d')
week = dt . isocalendar()[l]
price = float (record['Adj Close'])
cursor . execute("INSERT INTO stocks VALUES(?, ?, ?, ?, ?, ?)" , (symbol , dt .year , dt .month, dt .day, week, price))

db_conn . commit()

Making SQL do all the Work
In the Structured Data Exercise, the student had to manually group the data in a dictionary by week (really a (year.week) tuple). SOL can do this for
us, and even calculate the average. We break down each line of the query as follows:

• SELECT: We want the year, the week, and the average for the prices for the days on that year week, so we use SELECT to pick those
columns.

• FROM: We're working with the stocks table , so we say FROM stocks.

Doc ID: 6689695 .
• WHERE: To put conditions on a SQL query, we use the WHERE clause. Here our only condition is that we only want data associated with a

certain symbol (AAPL in this case).

• GROUP BY: We need to group the data by week, and since we don't want the same week in two different years to get grouped together, we
have to group by the year and the week, hence GROUP BY year, week.

• ORDER BY: To display our data in descending order by date, we have to use ORDER BY. SQL even allows mixed ascending and
descending subgroups, so we have to specify that we want both the year and the week in descending order.

We append each result from our query into an empty list, which gets returned by our function.

def weekly_averages (symbol, db_conn):
cur = db_conn . cursor()
results = []

for result in cur . execute(' ' 'SELECT year, week, avg(price)
FROM stocks
WHERE symbol=?
GROUP BY year, week
ORDER BY year DESC, week DESC'' I , (symbol ,)) :

results . append(result)

return results

Execute!
Here we create our database in aapl.db. Note that it will raise an exception if the table has already been created in the database. If you simply
comment out the create_database() call to get around this, then be careful since import_data() will insert the data again, so you'll have the double
entries in your stocks table. Restart this notebook and delete aapl.db to get a truly fresh start.

db_file ' aapl.db '

db conn = sqlite3 . connect(db_file)
create_database(db_conn)
i mport_data('AAPL ' , ' aapl.csv' , db_conn)

Now that the data is in the database, we can call our weekly_averages() query function. This will just display the list of results.

weekly_averages(' AAPL ' , db_conn)

Doc ID: 6689695

Module: Structured Data: CSV, XML, and JSON
I (b) (3) - P . L . 86- 36 1

Updated over 1 year ago by ._I ______ Ii~ COMP 3321 ·
3 5 701 263

0

friiri♦i,i ml
(U) Read, write, and manipulate CSV, XML, JSON, and Python's custom pickle and shelve formats.

Recommendations

UNCLASSIFIED

(U) Setup
(U) For this notebook, you will need the following files:

• user file.csv

• user file.xml.

(U) Right-click each to download and "Save As," then, from your Jupyter home, navigate to the folder containing this notebook and click the
"Upload" button to upload each file from your local system.

(U) Introduction: It's Sad, But True
(U) Much of computing involves reading and writing structured data. Too much, probably. Often that data is contained in files--not even a database.
We've already worked with opening, closing, reading from, and writing to text files. We've also frequently used str ing methods. At first, it might
seem that that's all we need to work with CSV, XML, and other structured data formats.

(U) After all , what could go wrong with the following?

my_csv_file = open ('user_file.csv' , 'r')

Doc ID: 6689695

csv_lines = my_csv_file . readlines()

comma_separated_records = [line . split(',') for line in csv_lines]

xml_formatter = """<person>
<name>{}</name>
<address>{}</address>
<phone>{}</phone>
</person>"""

xml_records "\n" . join([xml_formatter . format (*record) for record in comma_separated_records])

xml_records "<people>" + xml_records + "</people>"

with open ('file.xml' , 'w') as f:
f .write(xml_records)

(U) In a rapidly-developed prototype with controlled input, this may not cause a problem. Given the way the real world works, though, someday this
little snippet from a one-off script will become the long-forgotten key component of a huge, enterprise-wide project. Somebody will try to feed it data
in just the wrong way at a crucial moment, and it will fail catastrophically.

(U) When that happens, you'll wish you had used a fully-developed library that would have had a better chance against the malformed data.
Thankfully, there are several--and they actually aren't any harder to get started with .

(U) Comma Separated Values (CSV)
(U) The most exciting things about the csv module are the DictReader and DictWriter classes. First, let's look at the plain vanilla options for
reading and writing.

import csv

f = open ('user_file.csv')

reader = csv . reader(f)

header = next (reader)

all_lines = [line for line in reader]

all_lines . sort()

Doc ID: 6689695

g = open ('user_file_sorted.csv' , 'w')

writer = csv .writer(g)

writer .writerow(header)

writer .writerows(all_lines)

g . close()

(U) CSV readers and writers have other options involving dialects and separators. Note that the argument to csv. reader must be an open file (or
file-like object), and the reading starts at the current cursor position.

(U) Accessing categorical data positionally is not ideal. That is why csv also provides the DictReader and DictWriter classes, which can also
handle records with more or less in them than you expect. When given only a file as an argument, a DictReader uses the first line as the keys for
the remaining lines; however, it is also possible to pass in fieldnames as an additional parameter.

f . seek(0)

d_reader = csv . DictReader(f)

records = [line for line in d_reader]

(U) To see the differences between reader and DictReader, look at how we might extract cities from the records in each.

for the object from csv.reader
cities0 = [record[2] for record in all_lines]

for the object from csv.DictReader
citiesl = [record['city' J for record in records]

cities0 == citiesl

(U) In a DictWriter , the fieldnames parameter is required and headers are not written by default. If you want one, add it with
the writeheader method. If the fieldnames argument does not include all the fields for every dictionary passed into the DictWriter , the keyword
argument extrasaction must be specified.

g = open ('names_only.csv' , 'w')

d_writer = csv . DictWriter(g, ['name' , 'primary_workstation'], extrasaction='ignore')

d_writer .writeheader()

Doc ID: 6689695

d_writer .writerows(records)

g . close()

(U) Javascript Object Notation (JSON)
(U) JSON is another structured data format. In many cases it looks very similar to nested Python diet s and list s. However, there are enough
notable differences from those (e.g. only single quotation marks are allowed, boolean values have a lowercase initial letter) that it's wise to use a
dedicated module to parse JSON data. Still, serializing and deserializing JSON data structures is relatively painless.

(U) For this section, our example will be a list of novels:

import json

novel_list = []

novel_list . append({ 'title ' : ' Pride and Prejudice ' , ' author ' : 'Jane Austen' })

novel_list . append({ ' title ' : ' Crime and Punishment ' , ' author ' : ' Fyodor Dostoevsky' })

novel_list . append({ 'title' : ' The Unconsoled' , ' author' : 'Kazuo Ishiguro' })

json . dumps(novel_list) # to string

with open (' novel_list.json' , 'w') as f:
json .dump(novel_list,f) # to file

the_hobbit = '{"title": "The Hobbit", "author": "J.R.R. Tolkien"}'

novel_list . append(json . loads(the_hobbit)) # from string

with open (' war_and_peace.json') as f: #<--if this file existed
novel_list . append(json . load(f)) # from file

(U) By default, the l oad and l oads methods return Unicode strings. It's possible to use the json module to define custom encoders and decoders,
but this is not usually required .

(U) Extensible Markup Language (XML)

Doc ID: 6689695
(U) This lesson is supposed to be simple, but XML is complicated. We'll cover only the basics of reading data from and writing data to files in a very
basic XML format using the ElementTreeAPI, which is just the most recent of at least three approaches to dealing with XML in the Python Standard
Library. We will not discuss attributes or namespaces at all, which are very common features of XML. If you need to process lots of XML quickly, it's
probably best to look outside the standard library (probably at a package called lxml).

(U) Although there are other ways to get started, an ElementTree can be created from a file by initializing with the keyword argument file :

from xml.etree import ' ElementTree

xml_file = open (' user_file.xml ')

user_tree = ElementTree . ElementTree(file=xml_file)

(U) To do much of anything, it's best to pull the root element out of the ElementTree . Elements are iterable, so they can be expanded in list
comprehensions. To see what is inside an element, the ElementTree module provides two class functions: dump (which prints to screen and
returns None) and tostring . Each node has a text property, although in our example these are all empty except for leaf nodes.

root_elt = user_tree .getroot()

users = [u for u in root_elt]

print (ElementTree . tostring(users[0]))

u_children = [x for x in users[0]]

u_children[2] . text

u_children[2] . text = ' north-xS -1234 '

ElementTree . dump(users[0])

(U) To get nested descendant elements directly, use findall , which returns a list of all matches, or find . which returns the first matched element.
Note that these are the actual elements, not copies, so changes made here are visible in the whole element tree.

all_usernames = root_elt . findall(' user/name/username ')

[n . text for n in all_usernames[: 10]]

(U) To construct an XML document:

• make an Element ,

• append other Element s to it (repeating as necessary),

• wrap it all up in an ElementTree , and

• use the ElementTree .write method (which takes a file name, not a file object).

Doc ID: 6689695

apple = ElementTree . Element('apple')

apple . attrib['color'] = 'red'

apple . set (' variety ' , 'honeycrisp ')

apple . text = "Tasty"

ElementTree . dump(apple)

fruit_basket = ElementTree . Element('basket')

fruit_basket . append{apple)

fruit_basket . append{ElementTree . XML{ ' <orange color="orange" variety="navel"></orange>'))

ElementTree . dump{fruit_basket)

fruit_tree = ElementTree . ElementTree(fruit_basket)

fruit_tree .wri te('fruit_basket.xml ')

(U) Bonus Material: Pickles and Shelves
(U) At the expense of compatibility with other languages, Python also provides built-in serialization and data storage capabilities in the form of
the pickle and shelve modules.

(U) Pickling
import pickle

pickleme = {}

pickleme[' Title '] = 'Python is Cool '

pickleme[' PageCount'] = 543

pickleme['Author '] = •~l ____ _.f

I P . L . 86-36 .

Doc ID: 6689695

with open (' /tmp/pickledData.pick' , 'wb') as p:
p = pickle . dump(pickleme, p)

with open ('/tmp/pickledData.pick' , 'rb') as p:
p = pickle . load(p)

print (p)

(U) Shelving

(U) Creating a Shelve
import shelve

pickleme = {}

pickleme['Title'] = 'Python is Cool'

pickleme['PageCount'] = 543

pickleme['Author'] = •~l ____ _.f
db = shelve .open ('/tmp/shelve.dat')

db['bookl'] = pickleme

db . sync() •

♦

pickleme['Title'] = 'Python is Cool -- T~ Next Phase '

pickleme['PageCount'] = 123

pickleme['Author'] = •~1 ____ _.f

db['book2 '] = pickleme

db . sync()

db .close()

••
I P . L . 86-36

• ♦

• • ♦

♦

Doc ID: 6689695
(U) Opening a Shelve

db = shelve .open ('/tmp/shelve.dat')

z = db . keys()

a = db['bookl']

b = db['book2']

print (a)

print (b)

print (z)

db . close()

(U) Modifying a Shelve
db = shelve .open ('/tmp/shelve.dat')

z = db . keys()

a = db['bookl ']

b = db['book2']

print (a)

print (b)

print (z)

a['PageCount'] = 544

b['PageCount'] = 129

db ['bookl'] = a

db ['book2'] = b

Doc ID: 6689695

db . close()

UNCLASSIFIED

Doc ID: 6689695

Module: System Interaction
0

.
Updated over 3 years ago by .. l -----~I in COMP 3321

3 167 62 . .

@i,M,1 111

(U) Basic operating system interaction using the os, shutil, and sys modules.

Recommendations

UNCLASSIFIED

(U) Introduction

(b) (3)- P . L . 86-36

(U) Python provides several modules for interacting with your operating system and the files and directories it holds. We will talk about
three: os , shutil , and sys .

(U) Be aware that while this notebook is unclassified , your output may not be (depending on the files you're displaying).

(U) OS Module:
(U) This module helps you interact with the operating system, providing methods for almost anything you would want to do at a shell prompt. On
POSIX systems, there are over 200 methods in the os module; we will just cover the most common ones. Be aware that the os module includes
methods that are not cross-platform compatible ; the documentation is helpfully annotated with Availability tags.

(U) Directory discovery and transversal is pretty basic:

import os

os .getcwd()

os . chdir('/tmp') # Unix dir--choose different dir for Windows

Doc ID: 6689695

os . listdir()

os . getcwd ()

walker = os . walk(os . curdir)

type (walker)

list (walker)

(U) Avoid one common confusion: os. curdir is a module constant (·. ' on Unix-like systems), while os. getcwd() is a function. Either one can
be used in the method os. walk , which returns a generator that traverses the file system tree starting at the method's argument. Each successive
value from the generator is a tuple of
(directory, [subdirectories], [files]) .

(U) A variety of methods allow you to examine, modify, and create or remove directories and files.

f = open ('new_temp_fi l e . txt ' , 'w')

f . close()

os . stat(' new_temp_file.txt ')

os .mkdir(' other_dir ')

os . rename('new_temp_file.txt ' , ' other_dir/tempfile . txt ')

(U) Theos.path submodule provides additional functionality, including cross-platform compatible methods for constructing and deconstructing
paths. Note that while it is possible to join a path completely, deconstructing a path occurs one element at a time, right to left.

sample_path = os . path . join(' ford ' , ' trucks ' , 'fl50 ')

sample_path

os . path . split(sample_path)

os . path .exists(sample_path)

(U) Information about the current environment is also available, either via specific methods or in the os. environ object, which functions like a
dictionary of environment variables. If os. environ is modified, spawned subprocesses inherit the changes.

os .getlogin()

Doc ID: 6689695

os .getuid() # Unix

os .getgroups() # Unix

as .environ

os . environ['NEW_TEMP_VAR '] ' 123456 '

os . uname() # Unix

(U) shutil Module
(U) Living on top of the os module, shutil makes high-level operations on files and collections of files somewhat easier . In particular, functions are
provided which support file copying and removal, as well as cloning permissions and other metadata.

import shutil

shutil . copyfile(src,dest) # overwrites dest

shutil . copymode(src,dest) # permission bits

shutil . copystat(src,dest) # permission bits and other metadata

shutil . copy(src,dest) # works Like cp if dest is a directory

shutil . copy2(src,dest) # copy then copystat

shutil . copytree(src,dest)

shutil . rmtree(path) # must be real directory, not a symlink

shutil .move(src,dest) # works with directories

(U) sys Module
(U) The sys module provides access to variables and functions used or maintained by the Python interpreter; it can be thought of as a way of
accessing features from the layer between the underlying system and Python. Some of its constants are interesting, but not usually useful.

Doc ID: 6689695

import sys

sys .maxsize

sys .byteorder

sys .version

(U) Other module attributes are sometimes useful, although fiddling with them can introduce problems with compatibility. For instance, sys. path is
a list of where Python will look for modules when import is called. If it is modified within a script, and then modules can be loaded from a new
location, but there is no inherent guarantee that location will be present on a system other than your own! On the other hand, sys .exit() can be
used to shut down a script, optionally returning an error message by passing a non-zero numeric argument.

UNCLASSIFIED

Doc ID: 6689695

Manipulating Microsoft Office Documents with
win32com ,-(-b) -(3)- -P-.L-. -86-- 3 6 1

.
----~·······

Updated almost 3 years ago byl I in COMP 3321
3 1 115 18

0

ifo&B-ir:F dl,M1N li-1111-FffJI 1111
(U) Demonstration of using win32com to create and modify Microsoft Office documents.

Recommendations
'

(U) Manipulating Microsoft Office Documents with
win32com

(U) Weicome To Automation with win32com!
(U) The win32com module connects Python to the Microsoft Component Object Model interface that enables inter-process communication and
object creation within Microsoft Office applications.

(U) Note: win32com only exists on Windows platforms, so this notebook will not run on LABBENCH. In order to run this notebook, install
Anaconda3 on your Windows platform and use jupyter-notebook.

(U) "Hello World" for Word
(U) We need to import the library, and open Word.

import win32com.client
word = win32com . client .Dispatch('Word.Application')

Doc ID: 6689695
(U) Dispatch checks to see if Word is already open. If it is, it attaches to that instance. If you'd like to always open a new instance,
use DispatchEx .

(U) By default, Word will start, but won't be visible. Set this to True if you want to see the application.

word .Visible = True

(U) Create a document and add some text, setting a font size that we like.

worddoc = word . Documents . Add()
worddoc . Content . Text = "Hello World"
worddoc . Content . Font .Size = 18

(U) Save the document and exit the application. Note that win32com bypasses the normal Python file object, so we need to account for the
Windows directory separator.

(UMFOUO) Also, ClassifyTool may nag you for a classification. In order to prevent this, in Word, select the "ClassifyTool" tab, click on "Options", and
under "When Closing Document", uncheck "Always show Classification Form", and click "Save".

worddoc . SaveAs('u : \\private\\ jupyter\\win32com\\hello.docx ')
word . Quit()

(U) That's it!

(U) More Elaborate Word Example
(U) There's another option for starting the application:

word = win32com . client .gencache . EnsureDispatch('Word .Application')

(U) This can take slightly longer, but enables access to win32com constants, which are required for some methods. The alternative is to look
through the win32com documentation for the value of the constants you need.

(U) Let's take a look at a possible use case. Say we have reports in a particular format that we need to regularly generate. We can create a
template with the sections that will be replaced . In this case, they are ReportEvent , ReportTime , and ReportPlace . First, download the temRlate.
Then open the template and create a dictionary with the sections and the data that will be used.

Doc ID: 6689695

constants = win32com . client . constants # save some future typing
word .Visible = True
worddoc = word . Documents . Open('u: \\private\\ jupyter\\win32com\\demo_template.docx')

event_details = { ::::~:~~~~:::" • .. :.1 l. . • • • • • • •
1

P.L . 86_36
"ReportPlace" _ r -

}

(U) Now the magic happens. Lets iterate through the dictionary, replacing all of the sections withthe data.

Execute(FindText, MatchCase, MatchWhoLeWord, MatchWiLdcards, MatchSoundsLike, MatchALLWordForms,
Forward, Wrap, Format, RepLaceWith, Replace)
for tag, data in event_details . items():

= word . Selection . Find . Execute(tag, False , False , False , False , False ,
True , constants . wdFindContinue, False , data, constants .wdReplaceAll)

(U) We can add a couple of paragraphs of additional info, and we're done.

paragraphl = worddoc . Paragraphs . Add()
paragraphl . Range .Text = 'Additional info\n '
footer = worddoc . Paragraphs .Add()
footer . Range .Text = 'Produced by me \n'
worddoc . SaveAs(' u: \\private\\ jupyter\\win32com\\demo_out.docx ')
word . Quit()

(U)PowerPoint
(U) PowerPoint works very similarly. Again, download the temRlate

ppt = win32com . client . Dispatch('PowerPoint.Application')
presentation = ppt . Presentations .Open('u: \\private\\ jupyter\\win32com\\MyTeam_template.pptx')

(U) Did you notice that we didn't need to set ppt. Visible ? PowerPoint is always visible.

title = presentation .Slides(l)

(U) We know the first slide is the title slide, so we've set a variable to it. PowerPoint presentations are made up of slides, which in turn are
collections of shapes. To modify a presentation, we need to know which shape is which. Let's take a look at title:

Doc ID: 6689695

title

(U) Hmm. That's not very helpful. Let's see what methods we have:

dir(title)

(U) At this point you're probably realizing that COM objects don't act like normal Python objects.

help(title)

(U) So Python just takes anything you try to do with title and passes it on to the Windows COM library. Which means you'll need to consult
Microsoft's Win32Com documentation if you have questions about something.

(U) Let's get back to working with this presentation. We still need to find out which shape is which:

for i, shape in enumerate(title . Shapes):
shape . TextFrame .TextRange .Text = 'Shape #{0}' .format (i+l)

(U) This sets the text for each shape to its index number so we now have a number associated with each shape. You only need to do this when
you're writing your script. Once you create your template, the shape numbers won't change. So the title is #1 and the subtitle #2.

(U) Undo a few times will remove the numbers.

(U) Let's update the title slide with today's date:

from datetime import date
today = date . today() . strftime(' %Y%m%d')
title .Shapes(2) . TextFrame .TextRange . Text = today

(U) Now let's update the status of our two focus areas. We'll skill the step of identifying the shapes we want to modify.

focusl = presentation .Slides(2)
focus1 .Shapes(2) .TextFrame .TextRange .Text = 'All Good, Boss'

focus2 = presentation .Slides(3)
focus2 . Shapes(2) .TextFrame .TextRange .Text = 'Sir, We have a problem'

(U) Now save the presentation with today's date, and Bob's your uncle.

presentation .SaveAs(' u: \\private\\jupyter\\win32com \ MyTeam_{0}.pptx ' . format (today))
presentation .Close()
ppt .Quit()

Doc ID: 6689695

(U) Visio .. 1 _P_. _L_. _s_6_-3_6_1_

(U) Starting the application should look familiar:

visio = win32com . client .Dispatch("Visio.Application")
documents = visio . Documents
document = documents .Add("Basic Network Diagram.vst")
document . Title = "New Network Graph"
pages = visio .ActiveDocument . Pages
page = pages . Item(l)

(U) Visio is visible by default, but can be hidden if desired.

Start with a built-in template
#Adda title

(U) So we've created a document and grabbed the page associated with it. Visio shapes are part of stencil packages, so let's add a couple.

NetworkStencil = visio .Documents . AddEx("periph_m.vss" , 0, 16+64, 0)
ComputerStencil = visio .Documents . AddEx("Computers and Monitors.vss" , 0, 16+64, 0)

(U) Other stencils are:

• Network Locations: netloc_m. vss
• Network Symbols: netsym_m. vss
• Detailed Network shapes: dtlnet_m. vss

• Legends: lgnd_m. vss

(U) Other stencil names can be found on the Internet.

(U) Now we need the shape masters that we'll use.

pc = ComputerStencil .Masters . Item("PC")
router = NetworkStencil .Masters . Item("Router")
server = NetworkStencil .Masters . Item("Server")
connector = NetworkStencil .Masters . item("Dynamic Connector")

(U) The names match the names you see when you view the shapes in the stencil sidebar. Let's add a few shapes.

Doc ID: 6689695

pcl = page .Drop(pc, 2, 2)
pcl .Text = "10.1.1.1"
pc2 = page .Drop(pc, 10, 10)
pc2 .Text = "10.1.1.2"
serverl = page . Drop(server, 15, 5)
serverl .Text = "10.1.1.100"
routerl = page . Drop(router, 8, 8)
routerl .Text = "10.1.1.250"

(U) Some of the shapes went off the page, so resize. You can wait until the end to do this, but it's more fun to watch the connections being drawn.

page . ResizeToFitContents()
page . CenterDrawing()

(U) Now draw the connectors.

arrow = page . Drop(connector, 0, 0)
arrowBegin = arrow . CellsU("BeginX") .GlueTo(pcl .CellsU("PinX"))
arrowEnd = arrow .CellsU("EndX") .GlueTo(routerl . Cellsu("PinX"))
arrow .Text = "pcl connection"

(U) We can customize a connector

arrow = page .Drop(connector, 0, 0)
arrowBegin = arrow .CellsU("BeginX") .GlueTo(pc2 . CellsU("PinX"))
arrowEnd = arrow .CellsU("EndX") .GlueTo(routerl . Cellsu("PinX"))
arrow . CellsU("LineColor") . Formula = "=RGB(255, 153, 3)"
arrow .CellsU("EndArrow") . Formula = "=5"
arrow .CellsU("EndArrowSize") . Formula = "=4"
arrow . CellsU("LineWeight") . FormulaU = "=5.0 pt"
arrow . Text = "pc2 connection"

arrow = page . Drop(connector , 0, 0)
arrowBegin = arrow . CellsU("BeginX") .GlueTo(serverl .CellsU("PinX"))
arrowEnd = arrow .CellsU("EndX") .GlueTo(routerl .Cellsu("PinX"))
arrow .Text = "serverl connection"

(U) Now resize, recenter, and save.

Doc ID: 6689695

page . ResizeToFitContents()
page . CenterDrawing()

document .SaveAs('U: \\private\\ jupyter\\win32com\\visio_demo . vsdx')

(U) Close the application.

visio . Quit()

(U) Excel
(U) win32com works with Excel too, but due to the slowness of the interface, you're probably better off using pandas.

Doc ID: 6689695

Module: Threading and Subprocesses
. 0 I (b) (3)-P . L . 86 - 36 1

.
-----r·

Updated over 2 years ago by I I in COMP 3321
3 320634

llt frii,H:i

(U) Module: Threading and Subprocesses

Recommendations

(U) Module: Threading and Subprocesses

(U) Concurrence and Python's GIL - i.e. Python doesn't offer true
concurrence

(U) Python's Global Interpreter Lock (GIL) means that you can really only have one
true thread at one time. However, Threading in Python can be immensely helpful in
speeding up processing when your script can perform subsequent steps tha do not
depend on the ouptut of other steps. Basically, it gives the illusion of being able to
do two (or more) things at the same time.

(U) Threading

(U) Threading allows you to spawn off "mini programs" called threads that work
independently of the main program (sort of). Threading allows you to send data off
to a function and let it work on getting results while you go on with your business. It

Doc ID: 6689695

can also allow you to set up functions that will process items as you add them to a
work queue. This could be especially helpful if you have parts of your program that
take a long time to execute but are independent of other parts of your program. A
good example is using a thread to execute a slow RESTful web service query.

(U) This adds some complexity to your life. Threads act asynchronously - meaning
that you have limited control as to when they execute and finish . This can cause
problems if you are depending on return values from threads in subsequent code.
You have to think about if and how you need to wait on thread output which adds
extra things to worry about in terms of accessing data. Python provides a thread­
safe container named Queue. Queues will allow your threads access without
becoming unstable, unlike other containers (such as dictionaries and lists) which
may become corrupted or have unstable behavior if you access them via multiple
threads.

(U) Subprocess

(U) The subprocess module is useful for spinning off programs on the local system
and letting them run independently.

import ipydeps

modules = ['threading' , 'queue']

for m in modules :
installed_packages = [package . project_name for package in ipydeps ._pip . get_installed_distributions()]
if (m not in installed_packages) and (m not in ipydeps . sys . modules) :

i pydeps . pip(m)

import time
from threading import Thread , Timer, Lock
from queue import Queue
import random

Doc ID: 6689695

result_q = Queue()
work_q = Queue()
work_list = []

The worker thread pulls an item from the queue and processes it
def worker ():

while True :
item = work_q . get()
do_work(item)
work_q .task_done() #pause while until current work_q task has completed

def do_work (item):
submit query process results and add result to Queue
result_q . put(wait_random(item))

def wait_random (t):
time . sleep(t[l])
print ('finished task{}' .format (t[0]))

def hello () :
print ("hello, world")

#Loading up our work_q and work_List with the same random ints between 1 and 10
time_total = 0
for i in range (10):

x = random . randint(l , 10)
time_total += x
work_q . put((i,x))
work_list . append((i,x))

work_q. qsize()

len (work_list)

%%time
print ('This should take{} seconds' .format (time_total))
for w in work_list:

wait_random(w)

Doc ID: 6689695

%%time
for i in range (5):

t = Thread(target=worker)
t . daemon = True # thread dies when main thread exits. If we don't do this, then the threads will continue to

"Listen" to the work_q and take items out of the work_q and automatically process as you

t .start()
work_q . join()

stick more items into the work_q
you have to start a thread before it begins to execute
block until all tasks are done

(U) You can also use the Timer class to specify that a thread should only
kick off after a set amount of time. This could be critical if you need to
give some other treads a head start of for various other reasons.
Remember, when we are doing threading you have to keep timing in
mind!

%%time
stupid Little example
ti = Timer(5.0, hello)
ti .daemon = True
ti. start() # after 5 seconds, "hello, world" will be printed

(U) You can mix these. The output below will most likely look like a bucket
of crazy because threads execute (sort of) independently.

#Loading up our work_q and work_List with the same random ints between 1 and 18
for i in range (10):

x = random . randint(l , 10)
work_q . put((i,x))

Doc ID: 6689695

%%time
for i in range (S):

t = Thread(target=worker,)
t . daemon = True
t . start()

ti = Timer(S.0,hello)
ti .daemon = True
ti . start() # ti *will probably* print 'hello, world' before all the other threads finish,

or it might not it depends on the work_q contents
work_q . join() # block until all tasks are done

(U) Subprocesses

(U) For most subprocess creation you will usally want to use the
subprocess.run() convenience method. Please note, if you wish to access
the STDOUT or STDERR output you must specify a value for the stdout
and stderr arguments. Using the subprocess.PIPE constant puts the
results from STDOUT and STDERR into the CompletedProcess object's
attributes.

import subprocess

completed = subprocess . run(['ls' , '-1'],stdout=subprocess . PIPE,universal_newlines=True)

print ("ARGS:" , completed . args)
print ("STDOUT:" ,completed . stdout)
print ("STDERR: " ,completed . stderr)
print ("return code:" ,completed . returncode)

completed = subprocess . run(['ls' , 'nosuchfile'],stdout=subprocess . PIPE,stderr=subprocess . PIPE,universal_newlines=True)

Doc ID: 6689695

,

print ("ARGS:" , completed . args)
print ("STDOUT:" ,completed . stdout)
print ("STDERR: ",completed . stderr)
print ("return code:" , completed . returncode)

dir (compl eted)

type (completed)

(U) For finer-graned control you can use subprocess.Papen() . This
allows greater flexability, and allows you to do things like kill spawned
subprocesses, but be careful - you may get some unexpected behavior.

completed = subprocess . Popen(['ls' , ' -1'],stdout=subprocess . PIPE , stderr=subprocess . PIPE,universal_newlines=True)

print ("ARGS:" , completed . args)
print ("STDOUT:" ,completed . stdout)
print ("STDERR: " ,completed . stder r)
print ("return code:" ,completed . returncode)

dir (completed)

type (completed)

(U) If you are just looking for a quick way to dump the output from the
subprocess into a variable, you can use subprocess.check_output(). This
is an older way of doing a specific type of .run() so you will see it used in
Python 2. It takes many of the same parameters as .run() but has a few
extra that correspond more closely to Papen()

completed = subprocess . check_output(['ls' , '-1'],universal_newlines=True)

dir (completed)

Doc ID: 6689695

print (completed)

type (completed)

Doc ID: 6689695

Distributing a Python Package at NSA
0

.
Updated 2 months ago byl ... ---"""lin COMP 3321

3 9 255 30

(U//rOUO~ Directions for how to make and distribute a Python package using the nsa-pip server.

Recommendations

UNCLASSIFIEDHFOR OFFICIAL USE ONLY

(b) (3) - P . L . 86 - 36 1

(UHFOUG) Module: Distributing a Python Package at NSA
(UHFOUO) At NSA, internally-developed Python packages can be installed by configuring pip to point to the nsa-pip server
(https: //pip. proj. nsa .ic .gov/). But how do you push your own package out to nsa-pip ? The basic steps are as follows:

1. (U) Make a python package.
2. (U) Make the package into a distribution.
3. (U) Push the project to Gitlab.
4. (UffFOUO) Add a webhook for nsa-pip to the Gitlab project.
5. (UHFOUO) Push the package to nsa-pip.

1. (U) Make a python package
(U) Recall from an earlier lesson that a python package is just a directory structure containing one or more modules, a special _init_.py file ,
and maybe some nested subpackages. The name of the package is just the name of the directory.

Doc ID: 6689695

awesome/
1-- _init_.py
-- awesome.py

(U) Example module

(U) Here are the contents of the awesome module (awesome.py) from before:

class Awesome (object):
def _init_(self, awesome_thing):

self . thing = awesome_thing
def _str_(self):

return "{0 . thing} is awesome! !!" .format (self)

def cool (group):
return "Everything is cool when you ' re part of {0}" .format (group)

if _ name_ -- _ mai n_' ·
a = Awesome("Everythi ng")
print (a)

(U) _init_.py

(U) Once again, the _init_. py file needs to be present but can be empty. It is intended to hold any code needed to initialize the package. If the
package has many subpackages, it may define _all_ to specify what gets imported when someone uses the from <package name> import
* syntax. Other things _init_.py commonly includes are import statements for subpackages, comments/documentation , and additional code
that glues together the subpackages.

(U) Since our module is small and we have nothing to initialize, we'll leave _init_. py empty. If we wanted, we could actually put all the
awesome.py code in _init_. py itself, but that can be confusing for other developers. We could also define:

all= (' Awesome' , 'cool']

(U) But since those would get imported anyway, we don't need to do that. You only need to define _all_ if the package is complex enough that
you want to import some things and not others or ensure that subpackages get imported.

(Uf/FOUO) For another example, see the init -RY. file for the parserror module on Gitlab.

Doc ID: 6689695

2. (U) Make the package into a distribution
(U) At this point, you could tar or zip up that package, give it to someone else, and they could extract it and use it. But what directory should they
put the package in? What if your package depends on other modules to work? What if you change the package and want to keep track of the
version? These considerations suggest that there is some package management that needs to go on. Python does have the pip package
manager to handle a lot of that. So how do we distribute the package so you can just pip install awesome ?

(U) First we need to add another layer of stuff around our package to help set it up for installation.

awesome/
1-- README.md
1- - awesome/
I 1-- _init_.py
I -- awesome.py
1-- setup.cfg

setup.py

(U) You can see that our original package directory has been moved down to a subdirectory. Above it we have a new project directory by the same
name, and alongside it there are a few more files. Let's look at each .

(U) setup.py
(U) setup.py is the most important file. It mainly contains a setup() function call to configure the distribution. It is also used to run the various
packaging tasks via python setup. py . The setup() function comes from the setuptools package, which is not part of the Python standard
library. You may need to pip install setuptools first to use it. (setuptools improves the legacy distutils package that is part of the standard
library and is the officjal!y recommended distribution tool these days.)

(Uf/FOUO) Our setup.py looks like this:

Doc ID: 6689695

from setuptools import setup

setup(
version= ' l.0.0 ' ,
name=' awesome' ,

)I

description=' (U) An awesome module for awesome things.' ,
long_description=open ('README.md ' , ' r ') . read(),
url= 'https://gitlab .coi.nsa.ic.gov/python/awesome.git' ,
author='COMP3321' ,
author_email=' comp3321@nsa.ic .gov, I
scripts=[J, I
packages= [' awesome ' , J, I
package_data={ }, I
i nstall_requ i res= [JI

(U) This just scratches the surface of the arguments you can give to setup() . You can find more details on the outside from the Python Packaging
Authority (https: //packaging. python .org/tutorials/distributing-packages/). For example, you can specify which versions of Python are
compatible using the classifiers and python_requires options, specify dependencies with install_requires and other * _requires options,
and include non-code data files.

(U//FOUO) For another example, see parserror 's setUQ:RY.-

(U) setup.cfg
(U) setup. cfg is an llil...fil.e. that configures _some defaults for the setup.py options. Ours is fairly simple:

[metadata]
description-file= README.md

(U) If you are using wheel , you may also want to set this if your code works for both Python 2 and 3:

[bdist_wheel]
univeral=l

(U) README.md

Doc ID: 6689695
(U) README.md is just a Markdown file that gives an overview of what the package is for and describes how to install and use it. (You may also
see README.rst files instead. The .rst stands for restructured text, which is a popular Python-specific way to format text.)

3. (U) Push the project to Gitlab
(UHFOUO) Of course, with a project like this, you should be using version control. And since the nsa-pip server ties into Gitlab, you'll need to use
Git. Learning Git could be a course in itself, so we'll just cover the basics here.

(U) For those who are unfamiliar, Git is a distributed version control manager. It's version control because it allows to to track and revert changes in
your text files easily in a Git repository. You can view the history of your changes as a tree, and even branch off from it and merge back in easily if
you need to . It's distributed because everybody who has a copy of the git repository has a full copy of the history with all the changes. And it's
a manager (like pip is a manager) because it manages all the tracking itself and gives you a bunch of commands to let you add and revert your
changes.

a. (U) Install and configure Git
I p . L . 86-36 l
.

(UHFOUO) With any luck, your system will already have Git installed. If you're working on LABBENCl;l , it should already be there. If you're on
another Linux system, you can yum install git (for CentOS/RHEL) or apt-get i

0

stall git (for lJbuntu). If you're on Windows, you will
probably want to use Git Bash or TortoiseGit or something similar . .._ ________________________ There are

additional Windows directions here.

(UHFOUO) After Git is installed, you will need to configure it and SSH to connect to Gitlab. On LABBENCH, the easiest way to do that is to run this
(Ruby) notebook to set UQ Git and SSH in jyQyter-docker. It takes care of:

• making a .gitconfig,

• making an overall .gitignore, and

• making an encrypted RSA key pair based on your PKI cert for use with SSH: .
(UHFOUO) If you are on another system, you will need to take care of those things·yourself. For tips, see the one-time setuQ instructions for Git on
Wikilnfo. ----------------------------
b. (U) Add version control to your project
(U) Now to work! Enter your local project directory (i.e. the top level where setup.py lives) and run git init . That will turn your project into a a Git
repository and get Git ready to track your files. (Note that it doesn't actually start tracking them yet--you have to explicitly tell it what to track first.)

(U) Next, since this is a Python package, you probably want to a . gi tignore file to your project directory containing:

Doc ID: 6689695

build/
*.pyc

(U) That will tell Git to ignore temporary files made when you run setuptools commands.

(U) Now our project structure should look something like this:

awesome/
1-- .git/
I · -- (... git stuff ...)
I -- . gi tignore
1-- README . md
1-- awesome/
I 1- - _init_.py

I
1--

-- awesome.py
setup.cfg
setup.py

(U) Next, you can start tracking all these files for changes by running :

git add *
git commit -m "Initial commit."

c. (U) Make a corresponding Gitlab project

(U) Congratulations! Your package is now under version control. However, you have the only copy of it, so if your local copy goes away, your code
is gone. To preserve it and enable others to work on it, you need to push it to Gitlab.

(U//FOUO) The first step is to make a new Gitlab project:

1. (U) Visit the new RI:Qjm12gge on Gitlab
2. (U) Enter your package name as the Project path (e.g. awesome).
3. (UMFOUO} Enter the overall classification level of the code and files in your project.
4. (U) Leave the Global access level set to Reporter. That will allow others to both clone (copy) your code and file issues if there are problems

with your package. See the Gitlab Rermissions chart for a full description of the access levels.
5. (UMFOUO) Choose the Namespace. By default it will make a personal project under your name and SID. If you belong to a Gitlab group

(and have the right permissions), you can also add the project to that group. Consider joining the EY.!hon grouQ and adding your project there.
6. (U) Add a short description of your package, if you want.
7. (UHFOUO) Select a visibility level. Since NSA Gitlab uses PKI , there is no difference between "internal" and "public."
8. (U) Hit "Create Project."

Doc ID: 6689695
(U) Afterwards, you can copy the URL from the main page of your new project and put it in the url argument to setup() in setup. py .

d. (U) Push your code out to Gitlab

(U) Your new project page should have some instructions on how to push code from an existing folder or Git repository. Near the top of the page
you should see a box with "SSH" highlighted to the left and a gi t@gi tlab. coi. nsa. ic. gov. . . address in the box to the right. Copy that address.
Then,

1. (U) cd to the top level of your project
2. (UMFOU~ git remote add origin git@gitlab.coi.nsa.ic.gov ... (using the .git addressyoujustcopied)
3. (U) git push -u origin master

(U) Afterwards, if you visit your Gitlab project page, you should see a list of your project files and the rendered contents of your README.

4. (U//FOUO) Create a tag for the package release.
(U) Back in your local repository, tag your local project with pip- and the release version and push that tag to Gitlab. For example, if your first
version is 0.1.0, run :

git tag -a pip-0.1.0 -m "Releasing to the pip repo"
git push origin pip-0.1.0

(U) Ideally, version numbers should comply with Python's PEP 440 specification. In plain English, that means they should be of the form:

Major.Minor.Micro

" " "
\- changes every bugfix

\- changes every new feature

\- changes every time backwards-compatibility broken

5. (U//FOUO) Create distributions
(U) Source distribution (sdist) and Wheel distributions are both collections of files and metadata that can be installed on a machine and then used
as a Python library. Wheels are considered a "built distribution" while sdist needs one extra build step, although that is transparent to a user if you
are using pip to install . For most use cases, you want to build both an sdist and bdist_wheel , upload both, and let pip work out which one to use
(almost always the Wheel).

Doc ID: 6689695
(U) An example of building and publishing the distributions is as follows:

pip3 install setuptools wheel twine
python3 setup.py sdist bdist_wheel

a. (U) Upload package to NSA-Pypi with Twine--
(U) twine is a Python library developed by the same team that maintain Pypi. It uses requests.py to make secure (https) uploads of Python
packages, and offers some command-line arguments to make it easy to specify what repository, client cert, ca bundle, and username/password to
use. The username and password can be blank (or anything you want) for uploading to NSA-Pypi , because NSA-Pypi will use your PKI and
Casport to determine authentication/authorization.

(U) Note that the NSA-Pypi server supports XPE with Labbench, so using twine there on Labbench does not require uploading your personal cert.
In non-Labbench environments, the following command should work:

twine upload dist/* -u '' -p '' \
--repository-url https://nsa-pypi.tools.nsa.ic.gov \
--cert /path/to/ca_bundle.pem \
--client-cert /path/to/your_cert.pem \
--verbose

(U) Bonus!

(U) Python Packaging Authority
(U) For years there were a variety of ways to gather and distribute packages, depending on whether you were using Python 2, Python
3, distutils , setuptools , or some obscure fork that tried to improve on one or another of them. This eventually got so messy that some
developers got together and formed the Python Packaging Authority (PyPA) to establish best practices and govern submissions to PyPI. PyPA's
approach is now referenced in the official Python documentation. They can be found at http: //packaging. python. org/ and have many useful
tutorials and guides, including how to use setuptools and push a package to PyPI itself.

(U) Testing
(U) Consider using common test modules like doctest , unittest , and nose to add tests to your code . You can try test-driven development (TDD)
or even behavior-driven development (BOD) with behave .

Doc ID: 6689695

(U) Documentation

(U) Make sure your code includes docstrings where appropriate, as well as good comments and a helpful README.

(U) virtualenv

(U) To solve the problem of coming up with an isolated, repeatable development environment (i.e. make sure you have the dependencies you need
and that they don't conflict with other Python programs), most developers use virtualenv and virtualenvwrapper .

(U) wheel

(U) If your package is large or needs to compile extensions, you may want to distribute a pre-built "wheel." The wheel module adds some
functionality to setuptools if you pip install wheel . On the receiving end, when you pip install packages, you may occasionally see that pip
is actually installing a .whl file -- that's a wheel. It is relatively new and is the recommended replacement for the old .egg format.

UNCLASSIFIED//FOR OFFICIAL USE 0NLY

Doc ID: 6689695

Module: Machine Learning Introduction
0 (b) (3) -P. L . 86 - 36

...... --------­• • • • • • • • • ■ •

Created 3 months ago by .. , -----I in COMP 3321
3 1 32 10

pressurewave

(UHFOUO) This notebook gives COMP3321 students an introduction to the world of machine learning, by demonstrating a
real-world use of a supervised classification model.

Recommendations

A Note About Machine Learning
Machine learning is a large and diverse field--this notebook is not trying to cover all of it. The point here is to give a real-world example for how
machine learning can be used at NSA, just to expose students to the kinds of things that machine learning can do for them. The example below is
of a supervised classification model. Supervised means that we're feeding it labeled training data. In other words, we're giving it data and telling it
what it's supposed to predict. It will then use those labels to figure out what predictions to make for new, unlabeled data that we give·it. It's a
classification model because the labels we want it to predict are categorical--in this case, is the Jupyter notebook in question a "mission", "building
block", or "course materials" notebook?

Load Required Dependencies

Doc ID: 6689695

import ipydeps

ipydeps . pip(['numpy ' , ' pandas ' , ' matplotlib ' , ' sklearn ' , ' sklearn-pandas ' , ' nltk ' , ' lbpwv ' , ' requests-pki' ,
' bs4'])

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from !Python.display import display
import requests_pki
from bs4 import BeautifulSoup
import os , re, lbpwv
import requests_pki
ses = requests_pki .Session()
from bs4 import BeautifulSoup
%matplotlib inline

Read in Labeled Training Data
Here we'll read in a table of what we call labeled training data. In this case, the 'label' is the 'category' field , which includes one of three string
values:

• Building block

• Mission

• Course materials

The label is the target variable, what we want the machine learning model to predict. The data the model will use to make these predictions is called
the features. You can see below that we have a lot of features comprising a lot of different data types--these will require some preparation before
they can be used in the model.

Doc ID: 6689695

import lbpwv , OS

bucket lbpwv . Bucket(' comp33211 ~)· •••••••••••••••••••••••••••• ·------

1 P . L . 86 - 36
filename = "nb_classification_data.csv" ._ _____ _.

if not filename in os . listdir():
file_content = bucket .get(filename) . content
open (filename, ' wb ') .write(file_content)

features_labels = pd . read_csv(filename) . set_index('id ')

def preview(df, name=' data ' , nrows=3 , sampled=True) :
if sampled :

df = df . sample(n=nrows)
print ("Preview of {}: " . format (name))
display(df . head(nrows))

preview(features_labels)
print ("Statistical summary of data:")
display(features_labels .describe())
print ("Datatypes in dataset:")
display(features_labels . dtypes)

Split Out Features and Labels
First we want to split out the features, which we'll use to predict the labels, from the actual labels. We'll also drop any features that will not be used
to make the predictions. In this case we'll drop the 'notebook_url' column.

Doc ID: 6689695

def split_features_labels (df):
features_labels = df . copy()
change NaN notebook_text values to
features_labels . loc[(features_labels . notebook_text != features_labels . notebook_text), ' notebook_text']
drop category and notebook_url for features
features = features_labels . drop(['category' , 'notebook_url'], axis=l)
split out the labels
labels = features_labels . query("category == category") . loc[:, ['category']]
return features, labels

features, labels = split_features_labels(features_labels)

preview(features, name='features' , sampled=False)
preview{labels, name='labels' , sampled=False)

Normalize/Prepare Features
At their core, machine learning models are just mathematical algorithms, ranging from simple to very complex. One thing they all share in common
is they work on numerical data. This presents a challenge when we want to use text-based or categorical features, such as the markdown text of a
notebook or the name of the programming language in which the notebook was written. Fortunately there are multiple methods we can employ to
convert this non-numerical data into numerical data.

Even with numerical data, we will often want to transform that data, by normalizing or scaling it (keeping all numerical data on the same scale) or
engineering it in some way to make it more relevant. We'll show some examples of all of these below.

Prepare Numerical/Categorical Features

Create boolean feature indicating whether notebook is classified

This will convert our text classification data into numeric data: 0 for unclassified, 1 for confidential, 2 for secret, and 3 for top secret.

Doc ID: 6689695

def classification_to_level (features):
if 'classification' in features . columns:

features[' classification_level'] = features[' classification'] . apply (lambda x: x . split("/ ")[0])
class_mappings = { 'TOP SECRET' : 3, 'SECRET' : 2, 'CONFIDENTIAL' : 1, 'UNCLASSIFIED' : 0}
features['classification_level'] = features['classification_level'] . apply (lambda x: class_mappings[x])
return features .drop([' classification '], axis=l)

return features

features = classification_to_level(features)
preview(features)

Convert dates to number of days ago

Our model can't interpret timestamp data either, so we'll convert it into number of days ago. In this case, all of our data was uploaded on November
14, 2017, so we will calculate the number of days the notebooks were created and updated before that cut-off date.

from datetime import datetime, timedelta

def encode_datetime (x) :
strp_string = '%Y-%m-%d %H: %M :%S'
if len (x) == 25 :

strp_string += ' +0000'
timestamp = datetime . strptime(x, strp_string)
return (datetime(2017 , 11 , 14) - timestamp) . days

def datetime_to_days_ago (features, timezone=True):
if 'c reated_at ' in features . columns and ' updated_at ' in features . columns:

features[' days_ago_created '] = features[' created_at '] . apply (lambda x : encode_datetime(x))
features[' days_ago_updated '] = features[' updated_at '] . apply (lambda x: encode_datetime(x))
return features .drop([' created_at ' , ' updated_at'], axis=l)

return features

features = datetime_to_days_ago(features)

preview(features)

Compute number of unique runs/downloads/views to total runs/downloads/views

Doc ID: 6689695
This is another value judgment we're making-does the ratio of unique runs to total runs tell us something about the notebook? Could it be that a
notebook with a lot of runs but few unique runs mean that it's more likely to be a mission notebook (i.e. mission users run the notebook over and
over again)? This is where domain knowledge becomes key in machine learning. Understanding the data will help you engineer features that are
more likely to be meaningful for the machine learning model.

def calc_ratios (features):
features['unique_runs_to_runs'] = features[' unique_runs'] / features['runs']
features['unique_downloads_to_downloads'] = features['unique_downloads'] / features['downloads']
features['unique_views_to_views'] = features['unique_views'] / features['views']
features['updated_to_created'] = features['days_ago_updated'] / features['days_ago_created']
return features

features = calc_ratios(features)
preview(features)

Scale features

Scaling features is very important in machine learning, and refers to putting all of your data on the same scale. Commonly this is a Oto 1 scale, or it
could also be in terms of standard deviations. This prevents large numeric values from being interpreted as more important than small numeric
values. For example, you might have over 1,000 views on a particular notebook, but only 5 stars. Should the views feature be interpreted as being
200 times more important than the number of stars? Probably not. Scaling the features puts them all on a level playing field, so to speak.

Doc ID: 6689695

from sklearn.preprocessing import MinMaxScaler

def scale_features (features, features_to_scale):
scaler = MinMaxScaler()
scaled_features = features . copy()
scaler . fit(features[features_to_scale])
scaled_features[features_to_scale] = scaler . transform(features[features_to_scale])
return scaler, scaled_features

features_to_scale = [
'views' ,
'unique_views' ,
'runs' ,

]

'unique_runs' ,
'downloads' ,
'unique_downloads ' ,
'stars' ,
'days_ago_created' ,
'days_ago_updated' ,
'classification_level'

scaler, scaled_features = scale_features(features, features_to_scale)
preview(scaled_features)

Impute missing values

Imputing means filling in missing values with something else. Commonly this can be a zero or the mean value for that column . We do the latter
here.

Doc ID: 6689695

from sklearn.impute import Simpleimputer

def impute_missing (scaled_features, features_to_impute):
imputer = Simpleimputer(missing_values=np . nan, strategy='mean')
imputed_features = scaled_features . copy()
imputer . fit(scaled_features[features_to_impute])
imputed_features[features_to_impute] = imputer .transform(scaled_features[features_to_impute])
imputed_features . loc[(imputed_features . notebook_text != imputed_features . notebook_text), 'notebook_text']
return imputer, imputed_features

features_to_impute = [
' health ' ,
'trendiness' ,
' unique_runs_to_runs ' ,
'unique_downloads_to_downloads ' ,
'unique_views_to_views' ,
'updated_to_created'

imputer, imputed_features impute_missing(scaled_features, features_to_impute)

preview(imputed_features)

Encode categorical features

A common way to encode categorical features is to use what's called 'one-hot encoding'. This means taking a single column with multiple values
and turning it into multiple columns with a boolean value (0 or 1) indicating the presence of that value. For example, for the column 'owner_type', we
have two possibilities: 'Group' and 'User'. One-hot encoding turns this into two columns, 'owner_type_Group' and 'owner_type_User', where the
possible values for each are O or 1. The 1 indicates the value is present for that row and the O indicates it is not.

def encode_categories (imputed_features, features_to_encode):
encoded_features = imputed_features . copy()
encoded_features = pd . get_dummies(imputed_features, columns=features_to_encode)
return encoded_features

features_to_encode = ['lang' , 'owner_type']
encoded_features = encode_categories(imputed_features, features_to_encode)
encoded_columns = [col for col in list (encoded_features) if re . sub("[Sl_[A-Za-z]+$" , "" ,col) in features_to_encode)
preview(encoded_features)

Doc ID: 6689695

Perform feature selection on non-text features

Sklearn has some algorithms built in to help identify the most important features to keep for the model. This can help the model perform better by
removing some of the noise (features that don't have much predictive power) and also help it run more quickly. Below we're using
the SelectKBest algorithm, which simply keeps the top k features according to the predictive power of that feature.

from sklearn.feature_selection import SelectKBest
from operator import itemgetter

import warnings
from sklearn.exceptions import DataConversionWarning
warnings . simplefilter('ignore' , DataConversionWarning)

def select_kbest (encoded_features, k, text_features):
skb = SelectKBest(k=k)
numerical_features = encoded_features . drop(text_features, axis=l)
skb . fit(numerical_features, labels)
feature_scores = []
selected_features = []
for feature, score in zip (numerical_features . columns, skb . scores_) :

feature_scores . append({ 'feature' : feature, 'score' : score})
feature_scores . sort(key=itemgetter('score'), reverse=True)

for counter, score in enumerate (feature_scores):
output_text = "Feature: {0}, Score: {1}" . format (score['feature'], score['score'])
if counter < k:

output_text += " (selected)"
selected_features . append(score['feature'])
print (output_text)

return selected_features

text_features = ['title' , 'description' , 'notebook_text']
joined_to_label = labels . join(encoded_features, how='left') .drop('category' , axis=l)
selected_features = select_kbest(joi ned_to_label, k=21 , text_features =text_features)

Prepare Text Features

Doc ID: 6689695
For preparing the text, we first will clean/normalize the text, then stem it, and then vectorize it with TF-IDF {Term Frequency-Inverse Document
Frequency) weighting. These are all explained below.

Strip portion markings from description and notebook_text

Since we already have the classification level of the notebook as its own feature, we'll strip out the portion markings from the description and
notebook text fields.

import re

strip portion markings from descriptions
def strip_portion (text):

return re . sub (' (?: [SJ([[StwJ[Sls[SJ, [SI-] *[SJ)) ' , text)

def strip_portion_markings (encoded_features) :
encoded_features('description'] = encoded_features['description'] . apply (lambda x: strip_portion(x))
encoded_features['notebook_text'] = encoded_features['notebook_text'] . apply (lambda x: strip_portion(x))
return encoded_features

stripped_pms = strip_portion_markings(encoded_features)
previ ew(stripped_pms)

Strip punctuation and numbers from text

Here's some more cleaning of the text data to strip out characters we don't care about. Specifically we're stripping out punctuation and numbers to
keep just the words. There are scenarios where you might want to keep some of these things, but even then you would usually encode any number
as [NUMBER] or something like that.

Doc ID: 6689695

no_word_chars = re . compile ('A[Aa-z]+$')
strip_punct_digits = re . compile ('[AISJsa-z]')
strip_extra_spaces = re . compile ('~ s{2,}')
contains_digits = re . compile ('(. 1S)d+.*)')
strip_punct = re . compile ('(AISJs~]')

def normalize_text (text) :
normal = text . lower()
remove any words containing digits
normal = " " . join([contains_digits . sub(' ' word) for word in normal.split("")])
remove words that contain no word characters(a-z)
normal = " " . join([no_word_chars . sub(' ' , word) for word in normal.split("")])
remove all punctuation and digits
normal = strip_punct_digits . sub('' , normal)
remove all punctuation
#normal= strip_punct.sub(' ·, normal)
replace consecutive spaces with a single space
normal = strip_extra_spaces . sub(' ' , normal)
remove Leading and trailing whitespace
normal = normal . strip()
return normal

def normalize_text_features (df, text_features):
temp_df = df . copy()
for feature in text_features:

temp_df[feature] = temp_df[feature] . apply (lambda x: normalize_text(x))
return temp_df

normalized_text = normalize_text_features(stripped_pms, ['description' , 'title' , 'notebook_text'])
preview(normalized_text)

Stem text

Stemming means stripping words down to their roots or stems, so that variations of similar words are lumped together. For example, we would
judge 'played', 'play', 'plays', and 'player' to all be fairly simple, but if we vectorize them as separate words, our machine learning algorithm will treat
them as completely separate. In order to keep that relationship (and reduce the number of features for the model to train on), we'll reduce these
terms down to the common stem. A lot of machine learning on text features now uses word embeddings as a way to show relationships among
terms, but that's outside the scope of this notebook.

Doc ID: 6689695

from nltk.stem import SnowballStemmer

stemmer = SnowballStemmer('english')

def stem_text (df, text_features):
temp_df = df . copy()
for feature in text_features:

temp_df[feature] = temp_df[feature] .apply (lambda x: "" . join([stemmer . stem(word) for word in x. split(" ")]))
return temp_df

stemmed = stem_text(normalized_text, ['description' , 'title' , 'notebook_text'])

preview(stemmed)

Transform Text Features, Combine with Numerical Features
We use a DataFrameMapper object from the sklearn-pandas library to map all of the text and numerical features together. The text features are
first vectorized and weighted using TFIDF, which makes it so that terms seen commonly in a lot of the documents (notebooks in this case) are
weighted lower to give them less importance. This prevents terms like the , and , etc. , from being given too much importance.

Doc ID: 6689695

use DataFrameMapper to combine our text feature vectors with our numerical data
from sklearn_pandas import DataFrameMapper
from sklearn.feature_extraction.text import TfidfVectorizer

vect = TfidfVectorizer(stop_words='english' , min_df=2)

mapper = DataFrameMapper([
('title' , vect),
('description' , vect),
('notebook_text' , vect),
(selected_features, None)

], sparse=True)

split out Labeled and unlabeled data; fit, train, test from the former, predict on the Latter
joined_data = stemmed . join(labels, how='left')
training_data = joined_data . query("category == category") . drop("category" , axis=l)

fit and transform the Labeled data to build the model
mapper . fit(training_data[selected_features + ['title' , 'description' , 'notebook_text']])
training_features = mapper . transform(training_data[selected_features + ['title" , 'description' , 'notebook_text']])

Split Training and Testing Data
Now we split our data into a training and a test set, which is important to be able to test the success of our model. Here we keep 80% for training
and 20% for testing.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(training_features, labels, test_size=0.2 , random_state=123)

print ("Training set has{} samples" .format (X_train . shape[0]))
print ("Testing set has{} samples" . format (X_test . shape[0]))

Create Training and Predicting Pipeline
The below code just gives us a way to compare the performance of multiple models, in terms of training/run speed and accuracy /f1-score. The f1-
score is a score that takes into account both precision (how many of my predictions of class A were actually class A) and recall (of those that were
actually class A, how often did I predict those directly). This is especially important for imbalanced datasets. For example, if building a model to

Doc ID: 6689695
predict fraudulent credit card transactions, a huge majority of credit card transactions are not likely to be fraudulent. If we built a model that just
predicted that all transactions were not fraudulent, it might be correct over 99% of the time. But it would get a recall score of O on predicting
transactions that were actually fraudulent. Using the f1-score would bring that overall score down accouting for that imbalance.

Doc ID: 6689695

import matplotlib.patches as mpatches
from time import time
from sklearn.metrics import fl_score, accuracy_score, fbeta_score

def train_predict (learner, sample_size, X_train, y_train, X_test, y_test):

inputs:
- learner: the learning algorithm to be trained and predicted on
- sample_size: the size of samples (number) to be drawn from training set
- X_train: features training set
- y_train: labels training set
- X_test: features testing set
- y_test: labels testing set

results = {}

fit the Learner to the training data
start = time()
learner . fit(X_train[:sample_size], y_train[:sample_size])
end = time()

calculate training time
results['train_time'] = end - start

get predictions on test set
start = time()
predictions_test = learner . predict(X_test)
end = time()

calculate total prediction time
results['pred_time'] = end - start

compute accuracy on test set
results['acc_test'] = accuracy_score(y_test, predictions_test)

compute f-score on the test set
results['f_test'] = fl_score(y_test, predictions_test, average=' weighted')

Success

Doc ID: 6689695
print ("{} trained on{} samples." .format (learner ._class_ ._name_ , sample_size))

return the results
return results

def evaluate (results):

Visualization code to display results of various learners.

inputs :
- learners: a list of supervised learners
- stats : a list of dictionaries of the statistic results from 'train_predict() '

create figure
fig, ax = plt . subplots(l , 4, figsize=(14, 4.5))

constants
bar_width = 0.3
colors = ['#A00000' , '#00A0A0' , '#00A000')

super Loop to plot four panels of data
for k, learner in enumerate (results . keys()):

for j, metric in enumerate (['train_time ' , 'pred_time ' , ' acc_test' , 'f_test ']):
for i in np . arange(2):

creative plot code
ax[j] . bar(i+k*bar_width, results[learner)[i)[metric], width=bar_width, color=colors[k])
ax[j] . set_xticks([0.45 , 1.45))
ax [j] . set_xticklabels (["50%", "100%"])
ax[j) . set_xlabel("Training Set Size")
ax[j) . set_xlim((-0.1 , 3.0))

add unique y-Labels
ax[0) . set_ylabel("Time (in seconds)")
ax[l) . set_ylabel("Time (in seconds)")
ax[2) . set_ylabel("Accuracy Score")
ax[3] . set_ylabel("F-score")

add titles
ax[0) . set_title("Model Training")

Doc ID: 6689695
ax[l] . set_title("Model Predicting")
ax[2] . set_title("Accuracy Score on Testing Set")
ax[3] . set_title("F-score on Testing Set")

set y-Limits for score panels
ax[2] . set_ylim((0, 1))
ax[3] . set_ylim((0, 1))

create patches for the Legend
patches = []
for i, learner in enumerate (results . keys()):

patches . append(mpatches . Patch(color = colors[i], label = learner))
plt . legend(handles = patches, bbox_to_anchor = (-1.55 , -0.2), \

loc = 'upper center' , borderaxespad = 0. , ncol = 3, fontsize = 'x-large')

aesthetics
plt . suptitle("Performance Metrics for Three Supervised Learning Models" , fontsize 16, y 1.10)
plt . tight_layout()
plt . show()

Evaluate Classification Models
Here we run the code to evaluate the different models.

Doc ID: 6689695

import three supervised learning models
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
from sklearn.svm import SVC

initialize the three models
clf_A = MultinomialNB()
clf_B SVC(kernel='linear ' , random_state=123)
clf_C = RandomForestClassifier(random_state=123 , n_estimators=100)

calculate number of samples for 50% and 100% of the training data
samples_l00 = len (y_train)
samples_50 = int (0.5 * samples_100)

collect results on the learners
results = {}

for elf in [clf_A, clf_B, clf_C]:
clf_name = clf ._class_ ._name
results[clf_name] = {}

for i, samples in enumerate ([samples_50, samples_l00]):
results[clf_name][i] = train_predict(clf, samples, X_train, y_train, X_test, y_test)

run metrics visualization for the three supervised learning models chosen
evaluate(results)

Model Tuning
Most models have a variety of what are called 'hyperparameters' that can be tuned to find the sets of hyperparameters that work better for
predicting your data. Sklearn has a built-in object called GridSearchCV which lets you easily compare different sets of hyperparameters against
each other and pick the settings that work the best, depending on the scoring function you choose. Be aware that adding lots of different
hyperparameters can end up taking a really long time to calculate.

Doc ID: 6689695

from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer, fbeta_score, fl_score, accuracy_score

initialize the classifier
#elf= SVC(kernel='Linear', random_state=123, probability=True)
elf = RandomForestClassifier(random_state=123 , n_estimators=100, bootstrap=True)

create the List of parameters to tune
#parameters= {'C': {1.0., 5.0, 10.0), 'class_weight' : {None., 'balanced']}
parameters = {

'min_samples_split' : [2, 3, 4]
}

make an fl_score scoring object
scorer = make_scorer(fl_score, average='macro')

perform grid search on the classifier
grid_obj = GridSearchCV(

estimator=clf,
param_grid=parameters,
scoring=scorer

fit the grid search to the training data
grid_fit = grid_obj . fit(X_train, y_train .values . ravel())

get the best estimator
best_clf = grid_fit . best_estimator_

make predictions using the unoptimized and best models
predictions = (clf . fit(X_train, y_train)) . predict(X_test)
best_predictions = best_clf . predict(X_test)

report the before and after scores
from sklearn.metrics import classification_report
print ("Unoptimized model:")
print (classification_report(y_test, predictions))
print ("Optimized model:")
print (classification_report(y_test, best_predictions))

Doc ID: 6689695
report the best parameters chosen
print ("Best parameters for model: {}" . format (best_clf .get_params()))

Extract Top Features
The Random Forest model which we used above gives you a relative importance score for each feature, which is indicating how useful the feature
is in predicting the class. The scores are given as proportions, and all of them add up to 1.

name_to_importance = []

for name, importance in zip (mapper . transformed_names_, best_clf . feature_importances_):
if name . startswith(selected_features[0)):

index = int (name . split("_")[-1))
name = selected_features[index]

name_to_importance . append({ 'name' : name, 'importance' : importance})
name_to_importance . sort(key=itemgetter('importance'), reverse=True)
for counter, x in enumerate (name_to_importance [:25)):

print ("Rank: {}, Feature name: {}, Importance: {}" . format (counter+l , x['name'], x['importance']))

Precision Scores Above Certain Probability
Here we'll just show how accurate the model (in terms of precision) above a certain probability. For example, for predictions made with a 0.9 or
better probability score, how accurate was the model?

Doc ID: 6689695

from collections import defaultdict

predicted_proba = best_clf . predict_proba(X_test)

max_probs = []
for index, value in enumerate (predicted_proba) :

probability = max (value)
prediction = best_predictions[index]
actual = y_test[' category'] . values[index]
max_probs . append({ 'probability' : probability, 'prediction' : prediction , 'actual ' : actual})

max_probs_df = pd .DataFrame(max_probs)

if we want to subset the data to above a certain probability, we can use the code below
#max_probs_df. query("probability > 0. 8", inplace=True)

min_probability = max_probs_df[' probability '] .min ()

max_probs_df[' correct '] = max_probs_df[' actual '] -- max_probs_df[' prediction ']

possible_prob_scores = np . linspace(
start=mi n_probability,
stop=.95 ,
num=int (np . ceil((.95 - min_probability) * 100))

)

prob_to_average_score = pd . DataFrame({ 'prob_score' : possible_prob_scores})

average_scores = defaultdict(list)
for score in poss i ble_prob_scores:

average_score = np . mean(max_probs_df .query("probability >= {0}" .format (
round (score, 3)

))[' correct '])
average_scores['total'] . append(average_score)

prob_to_average_score[' average_score '] = average_scores[' total ']

plt .figure(dpi=100, figsize=(10, 5))
plt . plot(prob_to_average_score['prob_score'], prob_to_average_score[' average_score '])
plt .xlabel("Probability cut -off (lower bound) ")
plt .ylabel("Average accuracy percentage")

Doc ID: 6689695
plt .title("Average accuracy percentage of predictions above a certain probability score")
plt . show()

Distribution of Probability Scores
This just shows the distribution of the probability scores. We want to see a skewed-left distribution , meaning that most of the predictions are made
with a high probability score.

plt .figure(dpi=100, figsize=(10, 5))
plt .hist(max_probs_df['probability ' J, bins=20)
plt .xlabel("Probability Scores")
plt .ylabel("Count")
plt .title("Distribution of Probability Scores from Predictions")
plt . show()

Show Stats on Categories of Notebooks
This is just showing the statistics on the categories of notebooks as of 14 November 2017--these are just based on the labels in our training data,
not on the model predictions.

fig, ax = plt . subplots(figsize=(10, 10))
labels[' category' J .value_counts() . plot . pie(

autopct=' %1.1f %% ' ,
title="nbGallery Notebooks by Category as of 14 November 2017" , ax=ax)

plt .show()

Run Model on a New Notebook
Just enter the URL for a notebook in nbGallery, and see what category the model predicts for it.

Doc ID: 6689695

class NotebookExtractor (object) :

def _init_(self):
self . ses = requests_pki . Session()
self . notebooks_url = 'https://nbgallery.nsa.ic.gov/notebooks/'
self . tooltip_finder = re . compile ("(?:notebook has beenjhealth score)")

def download_notebook (self, notebook_id):
if "/" in notebook_id:

notebook_id = notebook_id . rstrip("/")
notebook_id = notebook_id . split ("/")[-1]

self . notebook_id = notebook_id . split("-")[0]
resp = self . ses .get(

)

self . notebooks_url + notebook_id,
headers={

},

'User-Agent' : 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:31.0} Gecko/20100101 Firefox/31.0' ,
'Accept' : 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0 .8 '

timeout =-10

return resp

def to_soup (self, resp):
return BeautifulSoup(resp . content)

def extract_tooltips (self , soup):
tooltips_dict = {}
for link in soup .find_all('a' , { 'class' : 'tooltips' , 'title' : self .tooltip_finder}):

if " shared" in link['title']:
continue

if "health score" in link['title']:
health = re . search("(ISJci+)~" , link['title']) .groups()[0]
tooltips_dict['health'] = round (float (health) / 100, 6}

else :
key = re . search("notebook has been(~+)" , link['title']) . groups()[0]
key = re . sub("(r?ed)$" , "" , key)
key += "s"
total_val = re . search("(~+)[Slstimes" , link ['title']) . groups () [0]
tooltips_dict[key] = int (total_val)
unique_val = re . search("(IS}:i+)ISJsusers" , link['title'])

Doc ID: 6689695
if unique_val:

tooltips_dict["unique_" + key]
return tooltips_dict

int (unique_val . groups()[0])

def extract_text (self , soup) :
extracted_text = []
for a in soup . select("#notebookDisplay")[0] . findAll():

if a . name in ["hl" , "h2" , "h3" , "h4" , "h5" , "p"]:
extracted_text . append(a . text)

return " " . join(extracted_text)

def extract_description (self , soup):
description = soup . find('meta' , { 'name' : 'description' })['content']
return description

def extract_title (self, soup) :
title = soup . find(' title') . text
return title

def extract_classification (self, soup) :
classification = soup . find('div' , { 'class' : re . compile ("classBanner.+")}) . text
return classification

def extract_owner_type (self, soup):
group = soup . find(' a' , { 'href' : re . compile ("IS]/groups[S)/.+")})
if group:

return 'Group'
return 'User'

def extract_lang (self , soup):
lang_tag = soup . find('img' , { 'title' : re . compile ("This notebook is written in")})
lang = re . search("IS)s(D,,+)$" , lang_tag['title']) .groups()[0] . lower()
return lang

def extract (self, notebook_id, to_pandas=True):
resp = self .download_notebook(notebook_id)
soup = self . to_soup(resp)
nb_dict = self . extract_tooltips(soup)
nb_dict['notebook_text'] = self . extract_text(soup)
nb_dict['description'] = self .extract_description(soup)
nb_dict['title'] = self . extract_title(soup)

Doc ID: 6689695
nb_dict['classification'] = self . extract_classification(soup)
nb_dict['owner_type'] = self . extract_owner_type(soup)
nb_dict['lang'] = self .extract_lang(soup)
nb_dict['id '] = self . notebook_id
if to_pandas:

return pd . DataFrame([nb_dict]) . set_index(' id')
return nb_dict

class NotebookModel (object) :

def _init_(self, df):
self .df = df . copy()
self . class_mappings = { 'TOP SECRET' : 3, ' SECRET' : 2, 'CONFIDENTIAL ' : 1, ' UNCLASSIFIED ' : 0}
self . scaler = scaler
self . features_to_scale = features_to_scale
self . imputer = imputer
self . features_to_impute = features_to_impute
self .features_to_encode = features_to_encode
self . encoded_columns = encoded_columns
self .validate_columns()
self . initialize_regex()
self . stemmer = SnowballStemmer('english ')
self .mapper = mapper
self . selected_features = selected_features
self . all_features = list (training_data)
self .elf = best_clf

def initialize_regex(self) :
self . pm_stripper = re . compile (' (?: [SJ([~l[S)s[S],[S]-] *ISi)) ')
self . no_word_chars = re . compile ('A(Aa-2]+$')
self . strip_punct_digits = re . compile ('[iS}sa- z] ')
self . strip_extra_spaces = re .compile ('ISls{2,}')
self . contains_digits = re .compile (' (.*!Slci+. *)')
self . strip_punct = re . compile ('[iS}slSJwJ')

def validate_columns (self) :
for col in self . features_to_scale + self . features_to_impute + self .features_to_encode:

if col not in list (self . df):
self . df[col] = np . nan

def classification_to_level (self) :

Doc ID: 6689695
self . df['classification_level'] = self . df['classification'] . apply (lambda x: x. split("/")[0])
self .df['classification_level'] = self .df['classification_level'] .apply (lambda x: self . class_mappings[x])
self . df .drop(['classification'], axis=l , inplace=True)

def encode_datetime (self, x):
strp_string = '%Y-%m- %d %H: %M: %S'
if len (x) == 25 :

strp_string += ' +0000'
timestamp = datetime . strptime(x, strp_string)
return (datetime(2017 , 11, 14) - timestamp) . days

def datetime_to_days_ago (self, timezone=True):
if 'created_at' in self . df . columns and 'updated_at' in self . df . columns:

self .df['days_ago_created'] = self . df['created_at'] .apply (lambda x: self . encode_datetime(x))
self .df['days_ago_updated'] = self . df['updated_at'] . apply (lambda x: self . encode_datetime(x))
self . df . drop(['created_at ' , ' updated_at'], axis=l , inplace=True)

else :
self .df['days_ago_created'] = 0
self . df['days_ago_updated '] = 0

def calc_ratio (self, field):
if field in self . df . columns:

self .df['unique_{0}_to_{0}' .format (field)] self .df['unique_' + field] / self .df[field]
else :

self .df[field] = 0.0
self .df['unique_' + field] = 0.0
self .df['unique_{0}_to_{0}' .format (field)] 0.0

def calc_ratios (self):
self . calc_ratio('runs')
self . calc_ratio('downloads')
self . calc_ratio('views')
if self .df['days_ago_created'] . values[0] 0 :

self .df['updated_to_created'] = 0.0
else :

self .df['updated_to_created'] = self . df[' days_ago_updated'] / self .df[' days_ago_created ']

def scale_features (self):
self .df[self .features_to_scale] self . scaler . transform(self . df[self . features_to_scale])

def impute_missing (self):

Doc ID: 6689695
self . df[self . features_to_impute] = self . imputer . transform(self . df[self .features_to_impute])

def encode_categories (self):
self .df = pd . get_dummies(self .df, columns=self . features_to_encode)
for col in self . encoded_columns:

if col not in list (self . df):
self . df[col] = 0

def strip_portion_markings (self):
self .text_features = [col for col in list (self .df) if self . df[col] .dtype == np .object]
for col in self .text_features:

self . df[col] = self . df[col] .apply (lambda x: self . pm_stripper . sub(' ' , x))

def normalize_text (self, text):
normal = text . lower()
remove any words containing digits
normal = " " . join([self . contains_digits . sub(' •, word) for word in normal.split("")])
remove words that contain no word characters(a-z)
normal = " " . join([self . no_word_chars . sub(' ' , word) for word in normal.split("")])
remove all punctuation and digits
normal = self . strip_punct_digits . sub(' ' , normal)
remove all punctuation
#normal= self.strip_punct.sub(' ', normal)
replace consecutive spaces with a single space
normal = self . strip_extra_spaces . sub(' ' , normal)
remove Leading and trailing whitespace
normal = normal . strip()
return normal

def normalize_text_features (self):
for feature in self .text_features:

self .df[feature] = self . df[feature] .apply (self . normalize_text)

def stem_text (self):
for col in self .text_features:

self .df[col] = self . df[col] .apply (lambda x: "" . join([self . stemmer . stem(word) for word in x. split(" ")]))

def fill_missing_columns (self):
for feature in self . all_features:

if feature not in list (self .df):
self .df[feature] = 0

Doc ID: 6689695
self . df = self . df . fillna(0)

def transform (self):
self . classification_to_level()
self .datetime_to_days_ago()
self . calc_ratios()
self . scale_features()
self . impute_missing()
self . encode_categories()
self . strip_portion_markings()
self . normalize_text_features()
self . stem_text()
self . f ill_missing_columns()
self . transformed = self . mapper . transform(self . df)

def predict (self):
return { 'predicted_class' : self . clf . predict(self . transformed)[0]}

def predict_proba (self):
probs = self .clf . predict_proba(self . transformed)
max_prob = round (np .max(probs) , 3)
max_class = self . clf . classes_[np .argmax(probs)]
return { 'predicted_class' : max_class, 'probability' : max_prob}

def transform_predict (self, probability=False):
self . transform()
if probability :

return self . predict_proba()
return self . predict()

notebook_url = input ("Enter the nbGallery URL for a notebook: ")

ne = NotebookExtractor()
nb_df = ne . extract(notebook_url)
model = NotebookModel(nb_df)
prediction = model . transform_predict(probability=True)
print ("The predicted category for{} is{} with a probability of {}." .format (

notebook_url, prediction['predicted_class'] .title(), prediction['probability']))

Doc ID: 6689695

COMP3321 Day02 Homework - GroceryDict.py
0

....
• • • • • • • • • • • • • •. • • • • • • • • • • • • • • • • • • • .. •. • . . 1 (b) (3) - P . L . 86-36 1

Created almost 3 years ago by-I ----t'I in COMP 3321
3 108 10

Mi:Mri · · ,

(U) Homework for Day 2 of COMP3321 .

Recommendations

(U) COMP3321 Day02 Homework - GroceryDict.py

Doc ID: 6689695

Grocery List

myGrocerylist = ["apples" , "bananas" , "milk" , "eggs" , "bread" ,
"hamburgers" , "hotdogs" , "ketchup" , "grapes" ,
"tilapia" , "sweet potatoes" , "cereal" ,
"paper plates" , "napkins" , "cookies" ,
"ice cream" , "cherries" , "shampoo"]

vegetables = ["sweet potatoes" , "carrots" , "broccoli" , "spinach" ,
"onions" , "mushrooms" , "peppers"]

fruit = ["bananas" , "apples" , "grapes" , "plumbs" , "cherries" , "pineapple"]
cold_items = ["eggs" , "milk" , "orange juice" , "cheese" , "ice cream"]

. proteins = ["turkey" , "tilapia" , "hamburgers" , "hotdogs" , "pork chops" , "ham" , "meatballs"]
boxed_items = ["pasta" , "cereal" , "oatmeal" , "cookies" , "ketchup" , "bread"]
paper_products = ["toilet paper" , "paper plates" , "napkins" , "paper towels"]
toiletry_i terns = ["toothbrush" , "toothpaste" , "deodorant" , "shampoo" , "soap"]

GroceryStore = dict ({ "vegetables" :vegetables, "fruit" :fruit, "cold_items" :cold_items,
"proteins" : proteins, "boxed_items" :boxed_items,
"paper_products" :paper_products, "toiletry_items" :toiletry_items})

myNewGrocerylist = diet ()

(U) Fill in your code below. Sort the items in myGrocerylist by type into a dictionary: myNewGrocerylist . The keys of the dictionary should be:

["vegetables", "fruit", "cold_items",
"proteins", "boxed_items", "paper_products",
"toiletry_items"]

(U) Only use the GroceryStore diet , not the individual item lists, to do the sorting. Note: The keys for myNewGrocerylist are the same as the
keys for GroceryStore.

Doc ID: 6689695

print ("My vegetable list: " , myNewGroceryList . set default (' vegetables' , list ()))
print ("My fruit list: " , myNewGrocerylist . setdefaul t ('fruit' , list ()))
print ("My cold item list:" , myNewGrocerylist . setdefault('cold_items' , list ()))
print ("My protein list: " , myNewGrocerylist . setdefault('proteins' , list ()))
print ("My boxed i tern list: " , myNewGroceryList . setdefaul t ('boxed_i terns' , list ()))
print ("My paper product list: " myNewGroceryList . setdefault('paper_products' , list ()))
print ("My toiletry item list: " , myNewGrocerylist . setdefault{' toiletry_items' , list ()))

Doc ID: 6689696

(U)

Password Project Instructions for COMP3321
0 • ~l_(_b_) _(_3 _)-- P-.-L- .- 8-6 ___ 3_6_

------··
Updated 6 months ago byl I in COMP 3321

3 130 18

N+i,HifJI i-hii·ll-1 1¥1i49N

(U) Password Project Instructions for COMP3321 ._I __________ o11,

• • • • • • • • •. •. • • •. •. •. • 1 P . L . 86 - 36

Recommendations

(U) Password Project Instructions for_.COMP3321 .
(U) These are the password project instructions for COMP3321 .. l _.._.-.-----fYou need to send a file containing your function(s) to the
instructors, not a notebook. Files should be named SID_password_functions.py

(U) Password Checker Function
(U) Demonstrates the ability to loop over data, utilizing counters and checks to see if all requirements are met.

(U) Write a function called password_checker that takes as input a string, which is your password, and returns a boolean True if the password
meets the following requirements and False otherwise.

1. Password must be at least 14 characters in length.
2. Password must contain at least one character from each of the four character sets defined below, and no other characters.
3. Passwords cannot contain more than three consecutive characters from the same character set as defined below.

(U) Character sets:

• Uppercase characters (string. ascii_uppercase)

• Lowercase characters (string. ascii_lowercase)

• Numerical digits (string.digits)

• Special characters (string. punctuation)

App roved for Release by NSA on 12 - 02 - 2019, FOIA Ca se# 108165

Doc ID: 6689696
You may want to write multiple functions that your password checker function calls.

**Due: End of Day 3 **

def password_checker (password):

This is my awesome docstring for my awesome password
checker that the author should adjust to say something
more meaningful.

Put code here
return True

(U) Run the following bit of code to check your password_checker function . If your code is good, you should get four (4) True statements printed to
the screen.

This is a good password
print (password_checker("abcABC123!@#abcABC123l@#") == True)

This is invalid because the runs of same character set are too Long
print (password_checker("abcdefgABCDEFG12345671@#$%"&") == False)

This is invalid because there are no characters from string.punctuation
print (passwor d_checker ("abcABC123abcABC123") == False)

This is invalid because it is too short
print (password_checker("aaBB11~") == False)

(U) Password Generator Function
(U) Demonstrates the ability to randomly insert characters into a string that meets specific password requirements

(U) Write a function called password_generator that takes as optional argument the password length and returns a valid password, as defined in
Password Checker Function. If no length is passed to the function , it defaults to 14. The following code outline does not account for the optional
argument. You must make a change to that.

(U) Do not use the password_checker function in your password_generator . You can use it after you get something returned from
your password_generator for your own testing, but it should not be part of the function itself.

Due: End of Day 5

Doc ID: 6689696

def password_generator (length):

This is my awesome docstring for my awesome password
generator that the author should adjust to say something
more meaningful.

Put code here
return True

(U) Assuming you have a valid password_checker function , use the following code to check your password_generator . If no False sprint, you are
good. Otherwise, something is up.

my_password = password_generator()
if len (my_password) != 14 or not password_checker(my_password):

print (False)

my_password = password_generator(25)
if len (my_password) != 25 or not password_checker(my_password):

print (False)

(U) If you really want to test it out, run the following. If False prints, something is wrong.

from random import randint
for i in range (10000):

if not password_checker(password_generator(randint(14, 30))):
print (False)

Doc ID: 6689697

Final Project Schedule Generator
0

....
Updated 3 months ago by-I-----, in COMP 3321

3 10 4 1

!Mi,M,N 1%,i-i?HI

(b) (3) -P.L . 86 - 36

(U) Little notebook for randomly generating a final project presentation schedule. Students will present every 30 minutes
starting at the start time specified, with an optional hour blocked off for lunch.

Import Dependencies
import ipydeps
i pydeps . pip([' query_input'])

import random
from datetime import datetime , timedelta
import ipywidgets as widgets
import re
from !Python.display import display, clear_output
from query_input import Querylnput

Run Random Generator!

Recommendations

This uses a RandomGenerator class that inherits from the Queryinput class from the query_input package we imported to make creating the
widget box and extracting the values out a little easier.

Approved for Release by NSA on 12-02-2019, FOIA Case# 108165

Doc ID: 6689697

class RandomGenerator (Queryinput):

def _init_(self, title="Enter data for random project presentation time generator"):
super (RandomGenerator, self) ._init_(title)
self . default_layout = { 'l_width' : '200px ' , 'r_width' : '400px ' , 'r_justify_content' : 'flex-end ' ,

'box_justify_content' : ' center' }

def generate_times (self):
start_times = []
for i in range {900 , 1500, 50) :

start_t ime = str (i)
start_time = re . sub{ "50$" , "30" ,start_time)
if len (start_time) == 3:

start_time = ' 0' + start_time
start_times . append{start_time)

return start_times

def random_schedule (self, students, start_time, lunch_time=None):
start_time = datetime . strptime(start_time, "%H%M")
if lunch_time:

lunch_time = datetime . strptime(lunch_time, "%H%M")
random . shuffle(students)
for student in students:

print (f"{student} will present at {start_time.strftime(' %H%M')}")
if lunch_t ime and start_time == lunch_time - timedelta(minutes=30):

start_time += timedelta(minutes=90)
else :

start_time += timedelta(minutes=30)

def submit (self , b):
clear_output(wait=True)
self . validate_input()
self . extract_input()
students = [student . strip() for student in self . extracted_input ('student_names'] . split ("\n ") if student . strip()]
self . random_schedule(students, self . extracted_input['start_time'], self .extracted_input . get('lunch_time '))

def create_input_form (self, start_times):
self . build_box(description="Enter student names, one per line:" ,

name='student_names' , required=True , widget_type=widgets .Textarea, r_height='400px ' ,
**self .default_layout)

Doc ID: 6689697
self . build_box(description="Select the start time:" , options=start_times, name='start_time ' ,

required=True , widget_type=widgets .Select, ** self .default_layout)
self . build_box(description="Select a lunch time (optional):" , options=[None] + start_times, name='lunch_time' ,

required=False , widget_type=widgets .Select, **self .default_layout)
self . build_box(description='' , name='submit' , widget_type=widgets . Button, button_text='Submit' ,

button_click=self . submit, required=False , box_justify_content='center' , r_border='solid lpx' ,
r_width='200px' , r_height='50px')

def run (self):
start_times = self .generate_times()
self . create_input_form(start_times)
self .display(border=' solid 2px')

rg = RandomGenerator()
rg . run()

